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SUNMARY

The flow behind the attached curved shock near the nose of an
sxially symmetricalbody placed in a uniform stream is investigated by
considering the perturbations from the initial Taylor-Maccoll conical
solution. The first-order perturbation yields the ratio between the
initial.radii of curvature of the shock wave and the body. When higher-
order perturbations are included, a regular shock wave near the nose leads
to a body shape which has a logarithmic singularity at the nose. It
seems, therefore, that, for a given regular body, the shock-wave shape
probably has a stigulsrity at the vertex, although the initial radius
of curvature remains finite.

Numerical results are obtained for the first-order perturbation
equations, covering the cases with initial semivertex angle 080 = 100,

20°, and 30°, each at five clifferent Mach numbers ranging approximately
from the minimum one for an attached conical shock to a value around 5.
For each value of e80, there is a critical Mach number, very close to

the minimum one for an attached conical shock, below which the ratio of
curvatures becomes negative. This Mach number has been conjectured by
Crocco in the two-dimensional case as the probable starting point for
the detached shock wave. Its significsnce is discussed here on the basis
of recent works by Thomas. The variation of the ratio of curvatures with
Mach number is found to be of the same nature as that in the two-
Mmens ional case, though the extent is much larger.

INTRODUCTION

. The problem of the curved shock in two dimensions was first dis-
. cussed by Crocco (reference 1) in 1937. Recently, papers by various

authors (references 2 to 5) again indicate the current interest in the
m relation between the curvature6 of the shock and the body.- Lin and
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Rubinov (reference 5) treated the flow behind curved shocks from a
general viewpoint by expanding the hydrodynamical quantities behind the
shock into Tsylor series in Cartesian coordinates. They indicated that,
by so doing, many problems in the axially symmetrical case could be
solved in psral.lelwith the two-dimensional ones. Nevertheless, when
the curved shock is caused by a sharp-nosedbody of revolution, singu-
larity of the expansion is encountered at the nose and a different
method should be applied.

!l?hisreport represents an investigation of this particular problem,
namely, the flow in the neighborhood of the sh~ nose of a body of
revolution, by means of a perturbation scheme. The difficulty arising
out of an expansion in Cartesian coordinates is avoided by using polar
coordinates. The relation between the initial curvatures of the shock
and the body is thus obtained. On reaching the surface of the body,
the first-order solution shows a logarithmic singularity at the initial
semivertex angle, thereby apparently limiting the applicability only to
concave bodies. It is suspected, however, that this difficulty actually
arises from the asymptotic representation of the solution as used in
this report and that the application of the result to convex bodies is
permissible if the actual solution satisfies certain continuity condi-
tions. It also appesrs from the asymptotic solution used in this
report that, when high-order approximations sre included, a regular
shock wave would require the body behind it to have a singularity,pre-
sumably logarithmic in nature, at the nose. Conversely, this means
that, if the body is representable by a regular function, the shock-wave
shape might have a logarithmic singularity near the nose. The curvature
of the shock would, however, stand in a finite ratio with the curvature
of the body.

Numerical integrations have been carried out for the first-order
perturbations for bodies with semivertex angles 10°, 20°, and 30° and
a nuniberof free-stresm Mach numbers up to around 5. The variation of
the ratio of the initial radii of curvature is found to be similar to
that in the two-dtiensional case as computed by Thomas (reference 3) or
Munk and Prim (reference 4). A critical point beyond which the ratio
of curvatures becomes negative likewise exists, such a point in the two-
dimensional case being pointed out by Crocco (reference 1) as the prob-
able limit of an actually attached shock wave.

The results of this report perhaps have significance as being the
first step in clarifying the general problem of flow past an arbitrary
body with an attached shock wave. On the practical side, its immediate
application is to improve the accuracy of the usual method of charac-
teristics by starting it by means of numerical computation at points
away from the troublesome axis of symmetry. When the initial Tsylor-
Maccoll solution gives subsonic or partially subsonic flow behind the

m

“



NACA TN 2505 3

shock, the method of numerical integration by means of characteristics
will fail to have any stsrting point. The present solution, if its
validity is substantiatedby experiment in this range of mixed subsonic
and supersonic flows behind the shock, may then be used to determine
approximately the sonic line, from which subsequent calculations may
be made in the usual manner.

This investigation was carried out at the Massachusetts Institute
of Technology under the sponsorship and with the financial assistance
of the National Advisory Committee for Aeronautics.

The authors are indebted to Professor Z. Ko?ml and his staff in
the Center of Analysis, M.I.T., for the numericfi computations in this
report.
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SYMBOLS

polsr coordinates in a meridian plane

velocity components in r- and e-directions, pressure,
and density, respectively

“limit” velocity, a constant for isoenergetic flow

free-stream velocity, pressure, density, and Mach
number, respectively

Taylor-Maccoll solution for initial vertex angle

perturbations from initial Taylor-Maccoll solution

factors depending on .9 in first-order perturbations
.

factors depending on @ in nth-order perturbations

velocity components at the shock in tangential and
normal directions, respectively

radius of curvature

angle between shock wave and uniform stream

*
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F@’k2, . . .

f~,f~, . . .

Subscripts:

S,w

so>Wo

coefficient functions in differential
first-order perturbations

nondimensional representation of ul,

respectively

regular part of coefficient functions
so forth throughout interval of 13

coefficient functions in differential
(k + l)th-order perturbations

regular part of coefficient functions
so forth throughout interval of 6
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equations for

equations for

F=, Fw, and

quantities evaluated at body surface and shock wave,
respectively

quantities evaluated at vertices
of shock wave, respectively

PEWURBATION EQUATION AND ITS BOUNDARY

of body surface and

CONlX2TIOl?S

Consider a sharp-nosedbody of revolution placed in a uniform
stream in the dlrectionof the axis of symmetry (fig. 1). In the
neigliborhoodof the vertex, the shape of the body differs but slightly
from that of a cone. One.may therefore try to find a first-order per-
turbationto the well-known Taylor-Maccoll solution (reference 6), to
be valid near the vertex. In view of the conical nature of the initial
solution, it is logical to use spherical coordinates with the polar
axis along the axis of the body. The surface of the body is represented
by 0 = i3s(r);the shockwave, by e = ~(r). The velocity components

in the r- and Alirections are denoted by u and v, respectively.
The free-stream velocity is denotedby U, the pressure, by P“, snd the
density, by po. The conditions immediately behind the curved shock
sze denoted by the subscript w snd those on the surface of the body,
by the subscript s. Needless to say, the flow behind the shock wave
is still isoenergetic, though not irrotational. “
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With the
motion sre:

introduction of polar coordinates, the equations of

(2)

The equation

a—
&

(pu) -tQ- JPv)+2:+xcote=o
r

(3)

In addition there is Bernoulli’s equation for isoenergetic flow,

27P #-#-—- =
7- lp

where c is the “limit” velocity, remaining
field of flow, and y, the ratio of specific

constant throughout the
heats. Equations (1)

to (4) govern-the fo~ dependent variables p, p, u,-and v. As is
usually assumed, the solution &tarts with the Taylor-MaccolJ.solution
for a cone of semivertex angle equal to the initial angle 6s0 of the

body. One tries to build upon it small perturbations to take care of
the subsequent curvature. Consider then a perturbation scheme by
writing

u = ~(e) + ii(r,e)

1
v = Vo(e) + V(r, e)

P = po(e) + ~(r,e)

t

P= po(@ +~(rje) J

(5)

---- -- .+ —... ..—-_ .——-. —— .. ..— ——— .—-. —.—--–— .-.———.
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In equations (5) ~, Vo, PO) and P. are the
tion mention above. They satisfy the relations

duo
—-vo=o
de

()

dvo 1 dpo
Vo —+% =-——

de po de

NACA

Teylor-Maccoll

=0

TN 2505

solu-

(6)

(7)

(8)

The barred quantities are the pertmbations. Substituting equation (5)
into equations (1) to (4), one obtains a set of equations involving ~,

Vo, and so forth, together with their perturbations. With the assump-

tion of small perturbations, the qdadratic terms of the perturbation
quantities may be neglected and the following equations result:

aii a fio 7-1 w P. a~ .0
(9)$%z+vo —-—-

raer 7
vo~+— —=

Po2 &

(7-1 ~o~ po~apo

)

a; .0
—To——-—— —-—

7 r be po P02 P. r ae r aO
(lo)

.

“

.

.. —..——
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‘4:+:)+4:+3’+PO=+’%+:C””)+
ca5+F ‘o ‘o

vo— ——
ae+r )Cote=o

r ae

One may try to find solutions of the form

F= k$r)pl(e)

(II) -

wheTe ~l(r), P2(r), ~d P3(r) approach zero with r. This restric-

tion is to ensure that the flow will approach the Taylor-Maccoll flow
near the vertex, for all values of f3. After introducing this form of
solution into equations (9) to (n), in general,

Pi(r) = LJr) = P3(r) = +

where n is any positive nuniber. For the immediate neighborhood of
the vertex, it suffices to take the lowest value of n satisfying the
boundary conditions. It then turns out, on assuming both the body and
the shock shapes to have finite initial curvatures, that the only pos-
sibility to satisfy the boundary conditions is to take n = 1 (cf. equa-
tions (23) tO (33)); that is,

Pi(r) = P2(r) = ~3(r) = r (12)

———— -— —.—.—- —. .—. ———- .— -- —.—.- —-—. -—.—-———.—. -——- -
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so that

ii = I’@)
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T= rvl(e)

~

(13)

~= rpl(e)

The requirement on BIJ B2, and 133 for small values of r is

automatical-lysatisfied, and the solutio~ t~s obta~ed *o~d be v~id
asymptotic solutions for small values of
the perturbations then reduce to a set of
equations:

r. Equations (9) to (11) for
ordinary linear differential

dul
$ll&l+vo T- &&vovl+qpI=o (14)

Y PO

7-1 dul

(

1

)

1 % dpo +& %+-—
7

%~+ul;vo-~—— p. de 70%-

( )
vlao+~!%-=;~ +S$-y-$=o (15)

7 de 7 Po

3POU1 + Po

(
PI 3% +

. These equations may

dvl

(

dpo

)

dpl
—+vl — +Pocote+vo —+
de de de

dvo

)
—+vocOte GO .
de

(16)

be put into the standard form of first-order
linear differential equations for easier discussion, namely,

dul
— = FIU1 + F2V1 + ‘3Pz

“de
(17)

‘.

.

.

—— -——
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.
dvl
—= G1~+G2V1+GP
de 31

dpl
— . HIU1 + ~vl + H3P1
de

where the 1?’s, G’s, and H’s sre all functions
conical solutions ~, Voj and po. Explicitly,

%=

%!=

G3 .

F1 . -lW
7 Vo

27-1
F2=—

7

Po
F3 .-—

%PO o

2 POLvo .—
7 Po

Of e, containing

Vof -1-v
Po

0(:+ Cot,e) + (%)%

,,
~
o 1 :2 PO’-;

,“ y.vo..,-~
. ..,..

.

(18)

(19)

the

(20) “

-. -..-—— -.. —..—.—. .-. —._. —__— ..— ._. — ______ _____ ______________
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HI =

H2-=

H3 = ( )(POP017-1%1
—— -.vovo’+s~+vocote

-g~- ,7 V. 7 )

.

2 PoAvo -F
7 0

● (22)

As for the boundary conditions to be satisfied by the complete flow,
they may be divided tit~ those at the shock wave and that at the body -
surface. At the shock wave G = Bw(r), the vsriables u, v, snd p

should be connected to the uniform stresm by the well-known shock con-
ditions. At the body surface, the resultant velocity should be tangent
to the body. Consequently, for the perturbations Ul, VI, and plj

the following conditions must hold:
—

( ) ( )rul)rvl~?ml e=ew = %- %VW-VOJ% - Po e=ew (23)

(24)

In condition (23), care must be taken to interpret correctly the exact
meaning of the right-hand side. With reference to figure 2, the quan-
tities UIJ, ~, and so forth are to be evaluated, strictly speaking, at

point B, which is at an angle ew to the sxis of symmetry and at which

—.— -
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the shock wave is at an angle *W with the-uniform stre~. It is now

assumed that the shock-wave angle has no infinite curvature or higher-
order derivatives and, therefore, is expressible as

dew
13W=6 +rW. ~+ o(r)

Also,

*w=ew+

For small values of r
obtained by

I

(25)

(26)

the shock conditions at B are therefore

I I

d% dew
Uw x Uw +2r—— (27)

e=ew e=~o d~ dr ~=~o

&d similar expressions can be obtained for Vw and ~. The .wgument

for the determination of ~, Vo, and PO at (3= ew runs along the

same line. It may be noted that the conical solution is no longer
regarded as only valid between the conical shock wave and the initial
vertex angle of the body, but its validity has been extended analytically
to the entire region tith boundaries computed in ieference 7.

Thus, from the values at poi@ A lying on the line e = ewo ~

having the same radius

at B may be evaluated.

vector r as B, the values of ~, and so forth

There follows,

I I
d% d(3w

% ‘% +r——
e*w e=ewo Idf3 dr e=ewo

(28)

ahd similar expressions can be obtained for V. and po. Remembering

that in the conical solution at e = ewe,

‘%=%

Pw = PO
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one may reduce condition (23) to

( ) =~(+-%)%qe=e.orulyrvl)rpl e=ew

or

Since r is assumed to be a mall parameter and the exceptional case
of infinite curvature is excluded, the boundary conditions as stated
above may actually be satisfied at e = ewo instead of e = e%T for

the left-hand side. Hence the final form is

)]dpo dew

T T e=ewo
(2-9)

Condition
explicit form.
written as

(24) at the body mrfacemay likewisebe put into amore
Assuming now that near the vertex the body shape may be

des
e~ = e~o+r~ + Higher-order terms (30)

then ‘,

I
dvo de6

I I
dvo des

-v
0 e=es % ‘o e=e60

+r——
de -dr e~ti ‘

r ——
de dr e=e~

.

(31)
.

.

—— —.—.. —.._..— —.——
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I
‘tice ‘0 e=eso

= o. As a result

a (32)

By omitting the higher-order terms, the condition at the body .

surface finally-reduces-to -

Reguding the
that from equation

dew
tional to —

problem now as an initial-val~ problem, one
(29) the initial values of the variables are

> and the final value of vll~ reached at

(33)

sees
propor-

the
@ pewo I

dt?s
body as given by equation (33) is proportional to —.1 . It there-

fore maybe concluded that, because of the linearityof equations (17)
d(ls

to (19), the quantities —

I

~d dew
are shply propor-

ti .e=eso” F g.~o

tional to each other. Restricted to the neighborhood of the nose, the
first derivative deldr in fact may be interpreted as the curvature.
For, from elementary calculus,

as r+O.

The right-hand side of equation (29) involves derivatives of the
oblique shock conditions and the conical solution. The explicit expres-
sions can be easily obtained. Resolving the velocity behind shock into
tangential and normal components with respect to the shock (fig. 3) it
may be readily verified that, as r —} O, the following me true:

I

-———---- — -— —– —> , .;
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.

(34)

dvw
—=-
d~

where dqtld~ snd dqnldy ms.ybe

tions as

dqt
—=
d~

dqn
—= TJCOSV
d~

The vsriation of density with

dqn +1
—uw’

T2
(35)

derived from the standard shock rela-

[++:1
shock angle is simply

1 Uw pw 2

()

4 cot *—— =
p“ d~ ~ (7 + 1)(MO)2 sin%

(36)

(37)

(38) ‘“

The conical solution is tabulated in detail in reference 7. Maccoll “
(reference 8) has expanded the solution nesr the cone surface @ = eso
as

%–’+=s0)2+%0

cot3’fy’- ,s.)3 -

[ 1,(%42z (e- ;s.)4,
c0t2eso +

3(7- 1)
()%01 -—
C2

[’ 0.5833 +
!37-77 (u%) 2

3 12(7- 1) C2

1

(e’- ‘s0)5+ ● .
.

cOt es. + 2
cOt es. .

%0 5
1- C2

(39) -
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where USO stands for the value

for V. and PO may be derived

15

Of~ate= e%. The series forms

by substituting equation (39) into the

clifferential equations. Nso know is the fact that the conical solu-
tion is analytic for a range of t3 larger than the C1Osed interval

hoi?e?e%. This knowledge is important because in formulating

boundary conditions (29) smd (32) the analyticity of the conical solu-
tion has been used. In other ~rds, in taking the derivatives d~lde,

and so forth, both the shock wave and the conical body surface are con-
sidered to be absent and the conical solution

‘e >eso.range ewo .

INTEWION OF PERIVRBATION

de s
In view of the proportionality of — Idre=

is extended beyond the

I&JA.TIONS

dewI‘dFe=ewocon-
:eSo

eluded from the formulation of the boundary conditions, equations (17)
to (19) are to be put into nondtiensional.form by using the initial
rsdius of curvature ~ of the shock wave as the characteristic length,

the “limit” velocity c as the @aracteristic velocity, snd the free-
stream density p“ as the characteristic density. Let

Then, equations (17) to (19) maybe rewritten as

(40)

_. .-. . . .. .—-— ._ —..-.. -——.. -.. —-- --— --—— — — . .. . . ——-.-— –—--——.— -
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The functions f, g, * h
with equations (20) to (22). The

.

fp = F2 “%?

- P“”fJ
‘3 c ( )

- (lsoF3

(42)

me ea611y identified by comparing
results are:

=G 1 ( )
1

%=> 0”%%
. G2

%=*%
}

(43)

~“ G3=—
%(

=e -
)J

6S0 H3

(A factor 19- 6%) is here ~tiplied by Fl, F3, Hl, and H3 because

it is recognized from equations (20) and (22) that each of these func-
tions has a pole at 19= t3%, where vo v~ies as e - 9s.. The func-

tions fl, and so forth are made regular for easier discussion. .

The boundary conditions now become: .

d(vw/c) d(voic)
VP= -—

‘t

ate= (3Wo

d$ *swo de e=ewo
( 44)

.
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since
d(%ofc)

de
= -2

/
Us. c

17

(45)

by equations (6) and ( 39). Here Rso is the initial radius of curvature

of the body surface. Since the functions f, g, and h are known only
in the form of numerical data such as those presented in reference 7,
integration of equations (kO) to (k2) generally can only be done by
numerical process. With given f360 and MO, one starts from the initial

points represented by equations (~) and integrates stepwise until
e = es. is reached. The value of q then bears out the ratio of the

radii of curvat,yreby equation (45).

The appearance of poles at e = es. in some of the coefficients

of ~ and ~ in equations (~) to (42) indicates that singularities
are to be expected in the solutions. As is well-known from the theory
of differential equations (see, e.g., reference 9) the singularity here
is in fact a “regular” one. If the solutions are assumed to be of the
form

( )()II e-esouu=

where P, Q, and R are analytic at f3= eso, the exponent a maybe

determined from the indicial,equation.ofequations (~) to (&):

flo - a o

0 -a

‘lo
o

f30

o = o

h30 - a

(46)

-.. — .—--—--- .. . ..— ——.—— ——— .-.—-—— - .—. —..——— --
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in which

f39 hl)

f10) f30> hloj and h30 are the values of the

and h3, respectively, at 13= eSo. Hence

[(2aaJ- 1~‘lo+h30) + f10h30 - f30h10 = O

It is easy to verfly that, based on equation (39))

1
f10 ‘5

NACA TN 2505

.

functions fl,
“

-

P
f30 = so

2p%%l%

2
>

hlo = Y- ‘1 %Q-%O

29 Ps~

7-1h30 = ~
● d

(47)

(48)

.

13ysubstitution of equation (~) into the indicial equation (~), the
latter becomes

2
()

10aa --=
2

with roots O, 0, and 1/2. Consequently, the solutions near the singu-
larity are of the form

—. _. _ _—.. —
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.

1n+-

~ = ~ aEn(6’- eSo)n + ~ bEn(e - e60) 2 +

n=O n=O

1.. (e - eSo)fJ c~n(e- e~)n

10g (e - eso)~Ccn(e - f%)n
n=O

(4)

.

It may be noted that q is one degree higher in e . es~ in the series
with coefficients bn and cn) because of the nature of equation (41).
This fact is fortunate because the logarithmic infinity at e = e% b
the solution of q is thus eliminated, leaving a finite value for the
ratio of the radii of curvature. The logarithmic terms in ~ and ~
are more troublesome. Although the actual perturbations are given by
rul and rpl (or r~ and r{), at the point e = e% the perturba-

tions are small only if r loge (e - (1%)-O. ~ the body is concave,

that is, e > eso, and is assumed to have a finite initial curvature,

there is obtatied

‘1
‘s = (e- eso

()
) + Higher-order terms

des

F e=e=

(50)

\

.— -.. . .. ——...._. —_._ ——.——. — _ -—___ .——..—
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Evaluated at the body surface, the cofiinations rul and rpl obvi.

Ously go to zero. The formulation of the boundary condition (45) is
still valid, and one obtains a finite ratio Rwo Rso for each vslue

/
of eso snd free-stresm Mach nmiber I@. On the other hand, if the

body is convex, the region of flow involves both 19-eso>o w

e- es. < 0. The assumption of small perturbation breaks down at the

pOtit e s es. and the procedure adopted abc&e requires further exami-

nation. A discussion of this point will be taken up in the section
“Numerical Results and Discussion.” Consider for the moment, then,
only bodies concave near the vertex.

Of all the coefficients h. the series soltiions (@), only three
may be chosen to fit the boundsry conditions. In order to obtain the
recurrence formulas for the rest, expand first

and so on. By substituting
equations sre derived:

(51)

.

into equations (b) to (42), the following

1
+ f30ccl + f31c~()- CQ = o

‘1

(52)

)‘3zc~m - “~n + ‘2cq(n-2) = 0E(
z+m=n

‘lzc~m +

(n=2j 3,4,...)
J

‘.

.

.

—— .
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%OC E.o + g30c<o - c~o = 0

E ‘llc~m
l+m=n + ‘31c~m

1

‘+z+~ ~ %lcqm ‘“‘i + l)c~n = 0 “(53)--

(n=l, 2,3, . . .)

‘,

(n = 2,3, 4,...)

(54)

sbflobfi+ fllbgo + f30bgl+ f31b~o “ ~ Q = o

> (55)

F(
flzb~+ f3zb~m

1 m=n ) -F+ i}~n + ‘2b~(n-2) = 0 -

(n=2,3, k,.. ●) J

.-.— _ .._ ____ ______ ———- — ~ — —..._———_ .



F( ‘12b~m
2+m-

+ ‘32b*m) - (n+ ;)bqn + z+~-l ~zbqm = 0

(n =2,3, 4, . . .) J

z+~ (%12b&n +

-Cg..+ floago+

(%zb~m)- bgn n +

f30a~o = O

(n =2, 3,

%22bqm

4,. . !(57)o

)

1
E( ) }

(x)
f12%3n + ‘32a~m - ‘@ “ c~fi+ ‘2~(n.1) = 0

2+m=n

(n=l,2,3, . . .)J

x( %2a4n
2+m=n )+ ‘32a~m + ‘22aqm - cqn - (n+ l)aq(n+l) ‘0

(n=O, 1,2, 3, . . .) (59)

.

,,

,

.

“
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.

.

%loaEo + ‘jo’@ - ‘@ = o

,+~%1 (%z% + ‘32a@n) - c~(n+l) +

(n = 0,1,2,... )J

In getting nesrer to e = e~o the method of numerical integration may

become inconvenient. The series forms are to t,akeover from there on
to indicate the behavior of the vsrious quantities. The first three
coefficients in the expansions (51) are given in appendti A.

In spite of the fact that logarithmic singularities occur in
both ~ and ~ near the vertex, the omission of quadratic terms of
the perturbations in the derivation of equations (9) to (l-l)does not
lead to inconsistencywhen the body is concave. For, it is clear that
each quadratic term will be one degree higher in r in comparison
with the linear terms. As in the discussion following equations (49),
one may put r proportional to 13- eso along the body. Then the

same arguments may be used to justify the omission.

The logarithmic nature of the solution does.lead to other compli-
cations. Fti6t, one would suspect that a regulsr shock curve does not
lead to a regular body shape, and vice versa. It has been show, how-
ever, that the ratio of the initial curvatures is finite (cf. equa-
tion (45)). Singularityies are revealed only when h@er derivatives
are investigated (see appendix B). Another complication is associated
with convex bodies. The Iogaritlmic singularity of the solution
apparently prevents one from applyigg boundary conditions on the body,
as pointed out above. This dfificul.typresumably comes from the
inadequate knowledge of the mathematical nature of the solution and
the improper method of representation. The representation may in fact
be interpreted as an asymptotic one and is shown to lead to useful
results only in a region bounded by a curve of the ‘natureof equa-
tion (50). There is reason to suspect, however, that the ratio of
curvature calculated for concave bodies also holds for the convex case.
Mathematically speaking, the asymptotic representation of a function,
as has been adopted in this report, is known to exhibit rather fre-
quently singularities which are absent in the function itself. For

. —.— .——. ..— — —— ———--——— ——.—. — –—.- - —-..—. -—
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extensions of the present results to co~ex boties, it is only necessary
that the qwntity a%~ ae h.smauniquevalue for e = Gso at the .

vertex in the exact solution. For, the value of %/& ae evaluated
by following a path along the body surface would be proportional to the
curvature of the body, while the present method of calculation gives a
valid result if the path satisfies the restriction (50), say. If these
~e the same, the above cal.culations hold with only a reversal of the
Si@lS of NO and Rso, and the ratio would not be changed. Physically,

one may also expect that a change of the body curvature one way or
another would produce similar changes at the shock. To be sure, these
arguments are not conclusive, and the application of the results to
convex bodies must be taken with reserve. On the other hand, one should
note that if &%/& be does not have a unique value for r=O,
e . 13so, the stepwise integration by the method of characteristicswi~

also reqwlre careful examination. A thorough investigateion of the
mathematical nature of the solution is indeed very interesting and very
much desired.

NUMERICAL RESUEJ!SAND DISCUSSION

Numerical titegrations have been carried out for the perturbation
equations as outlined in the preceding section. Bodies with initial
semivertex angles eso = 10°, 20°, and 30° are considered with the

free-stream Mach nuniberranging approximately from the minimum one for
attached conical shock wave to a vslue around 5. It iS found that both
~ snd { remain manageable practically up to the body surface. Since
their values neer the body surface me not needed for the determination
of the ratio of the curvatures, the series forms (49) were not used.

‘ The quantity TI approaches a finite value at the body surface and is
easily determined in the stepwise integration. Table 1 gives the coef-
ficient functions F, G, snd H as well as the values of the vsriables
during the integration of the various cases. In the computation, Kopal’s
tables (reference 7) have been used as the correct conical solution.
The coefficient functions sre computed to four places in most cases and
in appropriate small steps. The final value of q at the body surface
is of particular interest. After conversion to the ratio of the initial
radii of curvature according to equation (45), the results ae listed
in table 2 and plotted as figure 4.

Variation of curvature ratio Rwo/R60 with Mach number M for

given values of e90.- It is seen that, for given values of eso, as

the Mach number decreases from a fairly high value the ratio R170Rso
/

‘.
(i

.

.— — —.. .



4 NACA TN 2505 25

tends to increase until a msximum is reached. Further decrease of the
Mach number causes the ratio to come down rapidly, and at least in one
case

(
0so = 200, M = 1.216) the computation actually gives a negative

value at a quite low Mach number. With smaller values of f3so,the rbtio
exhibits a more violent change with Mach nuber in comparison with the
cases of larger values of Gso, though qualitatively the tendency is simi-
lar. As is well-known, the conical flow near the nose maybe completely
sub60nic, completely supersonic, or a mixture of the two. The Mach num-
bers determining the Ufferent regties for the present 19s’s are taken
down from reference 7 snd marked in figure 4 for comparison. At first
one might surmise that perhaps the ratio of Rwo/Rso reaches its msximum

at the end of the supersonic regime, comes down in the mixed regime, and
goes into negative values when flow becomes completely subsonic. This
turns out not to be the case.

Zero point of ratio RWo/RSo.- The zero point of the ratio ~o/Rso,
lies very close to, though is not exactly coincident with, the critical
Mach number below which a completely subsonic flow prevails. On the other
hand, it does not seem justifiable to conclude too much in this respect.
The vanishing of ~ol~o means an infinite curvature of the shock wave,

which may be recalled to be contradictory to the assumption in deriving
the boundary conditions (cf. equation (25)). Consequently, the effects
of higher-order terms will enter in deciding the radius of curvature.
Indeed, a similar phenomenon has been found in the two-dimensional case
and investigated to some extent by various authors. Crocco (reference 1)
was the first to notice the appearance of a theoretical negative curvature
ratio in two-dimensional shocks. He conjectured that detachment might
dart at this stage because of the unlikely physical pictme. Guderley
(reference 10) studied the behavior of flows qualitatively by examining
the hodograph plane. For a straight wedge with a shoulder, he claimed
that the shock would start with infinite, but not negative, curvature when .
the wedge angle lies beyond the Crocco point. The solution for a curved
wedge was assumed to be similar in nature to that of the straight wedge
with a shoulder. Recent works by Thomas (references 11 and 12) further
indicate that as soon as a subsonic regime begins to appear behind the
shock, the shock must exhibit a singular behavior, even though the body
is of regular shape. The axially symmetrical case is even more complicated.
As a matter of fact, the as~umption of a reguJar shock-wave shape near the
vertex is likely to be untrue for all Mach numbers, according to an inves-
tigation presented in appendix B. The present results in the subsonic
range must therefore be interpreted with reserve. The zero point is seen
to occur only when the flow behind the initial shock is entirely subsonic.

. Comparison with two-dimensional case.- A comparison of the results
in the supersonic regime with the corresponding ones in two-dimensional
flow over a wedge may next be made. Thomas’ results (reference 3) are
converted into the notations adopted in this report and plotted as fig-
ure 5. The general tendency is seen to be similar. For larger Mach.

. . . . . ..——.. . _—.. . ———- . ——–———— -———-——— -— .-
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nuribersthe difference in the ratio of curvatures in the two cases
becomes small. As the lowest Mach nuuiberfor attached straight shock
is higher in the two-dimensional.case, deviation is large for the
lo~r Mach numbers. The vsriation of the ratio of curvatures is also
much less violent than in the axially symmetrical case. For instance,
for 13so= 10°, the ratio of curvatures reaches a maximum of 4.5 in

the two-d~ensional case but goes beyond kO in the axially symmetrical
one.

Experimental data have not been available to the authors for
checking the theory. The greatest interest, besides checking the
theory for its applicability to concave bodies, is, of course, the
extension of the results to convex bodies. The behavior in the sub-
sonic regime requires more theoretical study as well as a thorough
experimental investigation, for which the technique is admittedly much
more difficult as the delicate nature of transonic flow enters the
picture. It i~ hoped that a comparison with expertiental data may
soon be made to evaluate the usefulness of the report.

On the report itself, the theoretical difficulty of the singular
point at 19= e% and the exact nature of the higher-order perturba-
tions deserve further examination. If the first-order perturbation,
as presented here, is found to awe well with experiments, more com-
putation is needed for a conclusive knowledge of the variation of

%./%O” The curve for es. = 10° in figure 4 can only be regarded

as tentative because of the small number of computed points and the
violent Wriatiofi. At least one or two intermediate values of 6s0

between 10° and 20° should be computed so that interpolation may become
possible for practical purposes. The limiting case for l@.~cu is
also of sufficient interest

Massachusetts I&titute of
Canibridge,Mass., June

to be included in any subsequent computation.

Technology
21, 1949
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APPENDIX A

IN EXPANSION (51)

The first three coefficients in expansion (51) sre as

’11=; cot‘s

[

4/3 %%2/c2
1+; @20Bo + 1-m ..

27-1
f2. _

7

f30

f31

’32

$10

7- 1 p“
,- (u8;/c2)

——
= 47 P@ us /c

o

“1- (us021c2)P“ cot e8n.7-1

87

Y-= -—

/
Us. c pso

“

. . .-

[

11- (%2/c2) p. 1 cot2e~ * 27- (8/3) ‘s~F2 -—-
47- u~o/c pso 40 7 -1-1

- (-%:/c2~

IU8 2 =2

‘-3+;*
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%0 = -cot eso

4 I
us 2 =2

=1 . 2 cOt es~ CBC 2e~o +
7(7-1)1 ~~2c2

-(/) o

g= = -cot

[

I
‘-

24+ (2/7) u~o c
e + csc2e=
so

7 -’1
‘-(:;)

2 =2 o
B.

27 - 1 p“ ‘so~30=-— ——
7 Pso c

r
P

1

0 %.47-1 2g32=-Ky-—-
7 * cot %0 -t.4 cOt es. csc 2eso +

o

-87+ 20- (10/7) I
UBO c

7-1 1.-(:.;)2 =2

.
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.

%0=

hn .

’12=

’20 =

%zl=

%2=

’30 =

/
~ Pso %30 c
.—

7 ‘o 1- (’%2/’2)

~ P~o ‘%/=.—
27 p“ ~

- (%:/.2) cot %0

~ Ps” /
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[

2+107 1——

“o 1- (%?lc2)’ 7 --
-1 4
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APPENDIX B

31

.

.

FURTHER DISCUSSION OF PERTURBATION

AND SINGULAFUTYAT NOSE

If a better approxhation is desired, it ~s

SCHEME

necessary
the nature of the perturbations more closely. still using
coordinates, assume now that each hydrodynamic quantity is
in a series expansion as follows:

w

V/C => rwn(ej

P

while equation (4) serves as
The conical solution and the

‘ n=O

co

= s&pn( e)
n

to look into
the polar
representable

the relation anmng p, p, u, and v.
perturbation (13) may

the first two terms of the above series. One then

b- Gpmrn
& n=

&lm—=,. p_nrn
P n.

(Bl)

(B2)

(B3)

be interpreted to be
may calculate:

(B4)

(B5)

.

(B6)

*
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where
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7-1
Pn~’-—

{Y [
pk

7
x(

k+ =n
%% )‘ + ‘lvm’ +

Z+m=j

%’
x(

Pn’

T
uz~ + Vzvm

]]
-—

Z+m=j -
2

(B7)

(la)

.

(B9)

the primed quantities
can be shown that the

general, of the form

.

being the derivatives with respect to f3. It
expression for p-k ~ equation (B9) is, h

(B1O)

With fkz (PO) a fwction ‘f % only. After subtiitution into the

fundamental equations (1) to (3), there follows by equating the
.

——. ——-——-——-
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coefficients of the kth power of r a set of equations for the

(k + l)th-order perturbations:

E[ PZvm 1‘+pz’vm+ (n+ 2)pZ~+ plvm cot t3 = O (B13)
l+m=k

In more explicit form, equations (Bll) to (B13) may be rewritten as

VOuk+l’ + ~ ~u~+~
Po

- ~vovk+l + (k + 1) — pk+l =
,02

QIJS(%VO>POJ . . ‘Y”k>vk),k) (B14)

7-1

(

1 7-1 ,0’

)
‘—%uk+l’ + ~vO - ~% ~“k+l +

7
+ vovk+l’ +

o

.

.

[

1 PO’
(k+2)~+; Vof->po 1 PO

— V. vk+l + ~ pk+l’ -
PO

Po PO’
~ ~ %+1 = %k@O’vO’pO~ “ “ “Y”k~vk~pk)
o

(B15)

— ——.-.—_—_. _ -.—— ...— _ ——— .—..- .
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(k + 3)u~+~ + vk+~’ +
[

(;+cot ‘)vk+~+;%+f+ &+~(k+3) +

where ~, Q*, ~d Q* contati the lower-order functions. The

Q functions turn out to be zero only for the zeroth- (the conical) smd
the ftist-order functions. However, in the general discussion of the
kth-order solution, it is only necessary to pick out
strongest singularity.

Again, equations (B14) to (B16) maybe put into
psmallel with the previous study. Thus,

the terms with

standard form in

‘k+l‘ = F~uk+l + ‘@k+l + ‘k3Pk+l + %,k

‘k+l‘ ‘G~uk+~+ ~vk+l+ ~3Pk+l+%,k

‘k+~’ ‘~~+l+%vk+l +~pk+l+%,k

where the A’s represent combinations of lower-order functions, and
the coefficients F, G, and H are given in the following expressions:

(B17)

(B18)

(B19)

k’y+l l-lo
‘kl=———

i

0

Y V.

27-1
‘k2= y

k+lpo
%’-~~

o

(B20)

.

—-——
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o
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PO P~’ + cot ~
P. P. )- [

vO(k+2)~+;vo’- 1z#&oN7-u (7-u%

?’

2 PQ
;Vo -

P.

(
tio‘

?+v —Vo
~=~ ‘Po

+cot!9)+(2+k++

.2V02 . !$2
7 0

(’+2)V0 T-lPo’U+(k~+l)(~-1)~2-— -——

%1 . po’ 7
7 PO o F ~

L. Z_%
7 ‘o P.

( )(’+p)~+$vo’ - &++cot, evo-~27-1)(7-1)%
HM = PO

$V02-%
Po

Lp~ PO‘

7 il-%b - 1

(k+ 1)(7 - 1) ~-—— - ‘+(k+s)~+vocote

%3- ’00
Lv2-~

70

(Em)

(B22)
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The point f3= 9s0 is seen to remain a pole for the coefficients

Fky Hu) Ud Hk=j as in the first-order perturbation. Proceeding

along a similar line, one writes down the indicial equation for the
index ~ as

‘kl, O - ak

o

%,0

‘k3,Cl

o

‘k3,0 - ‘%

= o (B23)

where f~, and so forth are the values of the regularized functions

(e- GSO)FE, and so forth (cf. equation (k6)) at 6’= e%. Hence,

-’+-l?-

It iS found by

) 1
%(%1,0 +‘k3j0 + ‘kl,@k3,0 - ‘k3,0hl@ = O (B24)

using equation (39) that

f=, o =

‘k3,0 =

%,0 ‘

‘k3,0 =

w
27

k+l Pso

2
%%0 o

(b + 1)(7 - 1)

272

(k + 1)(7 - 1)

27

p S02%0

P
‘o

The roots of the indicial equation (B24) then sre given as

.

(B25)

.

.
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.

k
The last root is positive as long as y > — a condition which is

2k+l’
satisfied by any real gas. Thus the complementary function of dif-
ferential equations (B17) to (B19) near e = es. maybe put down in

series form

,

‘k+l ‘~ ‘k)n(e- ‘so)”‘~ bu~,n(e- ‘So)mk+

10~ (e - es
O) ~ ~k,n(e- ‘S.)” (B26)

and SO Oil. As in the first-order-perturbation case, the solution for

vk+l is again one de~ee higher in (e - 8s.) in the b and c series.

In the complementary function, therefore, even for the higher-order
functions, nothing worse than a logarithmic term occurs. On the other
hand, the particular integrals associated with equations (B17) to (B19)
due to the presence of the lower-order functions in the Q functions of
equations (Blk) to (B16) have stronger singularities at e = es ,

0
because each lower-order function contains at least a logarithmic term.
To see this, let equations (B17) to (B19) be transformed into the
equivalent third-order equation for any of its variables, say uk+l

(‘r pk+~) as it has been shown to behave worse ne= the singularity

than ~k+l. Let Nk(~)vojPo) ● . •J”k>~k~Pk)
be the resultant non-

homogeneous term, srising out of the Q functions through the trans-
fOfitiOn prCICesS. men H uk+l,l> ‘“k+l,2~and ‘k+l,3 ~e the
complementary functions represented by the three series in equation (B26),
the general solution is obtainable by a variation of constant method.
Assuming the solution to be

‘k,l”k+l,l) ‘k,2”k+l,2~ ‘k,3”k+l,3

—-. ---— —.— .—_ ———..—— — . . .——— ——- —--— ----
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one finds
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v~, ~ =

[

‘w(~+l,29%+l,3)

w(%+@k+@%+l,3) N “

J

w (Uk+l,3~uk+l,1)
‘k,2 =

(

N de

‘) i

(B27)
w %+1, 1“%+1, 2%+1,3)

J

w (Uk+l,lj”k+l,2
Vk,3 =

(

N de
w %+l,lYuk+l,2~uk+l,3 )

where W stands for the Wronskian. To study the behavior new the
singularity, only the dominsnt terms sre of importance. From equa-
tion (R26) it is seen that near the singul~ity

‘k+l,1 ~ Constant, ‘k+l,2 = (
e - %0 )ak> ‘k+l,3 % log (e - 6s.)

Hence,

1 (e : eso)ak (log e - 1360)
1 (e-e

ak- 1
$0) 1

e-e so

1 (e- g60~-2 1

,, (e- )e80 2

.= (e - e60)
ak- 3

( )(
CLk-l

‘T‘k+l,l)”k+l,2 we - es.
)

( )( -’es.
ak-l

‘~‘k+l,2~”k+l,3 ~ e ) (
10g e-e

‘o)

( )(
%

)
e-e ‘1

‘ow %+1, 3%+1,1

●

.

.

.
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After substitution of these dominant terms in equation (B27’),there
follolrs

‘k, l“k+lj1 x
J

(
e - %.)2 1% (e --%)N ‘e

( ) J( Z-ak

‘k,2”k+l,2 % e-e ‘k e- es.
so )

N d6’

‘k,3“k+l,3 (z 10ge e -

J

%.) (e - %o)%de

It remains
neighborhood of
equations (B17)

equations (B15)

(B28)

next to find out the sinmlar behaviour of IV in the
e - eso. In the proces~ to reduce to the standard form

to (B19), the elimination,of vk+l’ or Pk+l’ from

and (B16) involves a multiplication by Vo. Consequently,

( )AS V. iS @o~ tO V= as e - es. near the singulsrity, unless Q*

or Q3k contains terms of higher-order stigularity than QdP -‘s0)2
the main contribution to the singularity of N will be Q~. A closer

examination reveals that the Q functions in equations (B14) to (B16) are
all combinations of products of the lower-omier functions. With the knowl-

edge that the v function is, in general, one degree higher in p - %.)

...— ———— .—— ——. -.. -— —-- -——–——— —---- —.-.. --------- -----
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than the corresponding u or p function, the leading terms of the
Q functions must be included in the following expressions:

For Qw,

~~~~(m+l)+,mP.~ ‘
2+m=k

For Qw,

,&k%%=

At once Q3k may be discarded, for it is at most of the same order

as Q~. To compare Q~ and Qz, formulas (B7) and (B8) for pm

and pm sre needed. Meanwhile, let it be assumed that the higher-

order functions have stronger or
their corresponding lower ones.
included in

For
%’

equally strong singularitiesthan
Then the leading terms must be

cl

G p-z I Pp&uJ’%-j
Z+m= +1 p+q=m -

As the highest terms centaining the (k+l)th-order functions curetaken
out in these expressions, the two summations containing pn become

identical and the difference lies in the terms u ‘j ~-j ~d Ujuq-j”
No more conclusions can be drawn without further knowledge as to the
nature of the solutions ~.

— —.-— -—— —
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To fix ideas, consider the second-order equations, the Q functions
of which contain the zeroth and first-order functions”whose forms are
known. The Q functions are as follows:

,,

‘[1 P12
.

QE=+—
(

PI
1 - %2 ‘.V02) + ~~1% + vl~o) +

2p02 ,,

1

,
U12 + VI2 - U12

( )
-Vlul’-vl,

With

(e-
most

Ill and PI
(

varying as log 13-

?22’

(log’26 - 9s.)

1+ log
.e80

10&(e - eso)

eso) near the singul~ity,

(B30)

(e- es. ) (B31)

Q~ evidently has a stro~er’ sinety:’ne~ ‘e . e~o th~

%.) 2%2* In this CSSe Am (cf. equation (B29)} coritribute~’“

to ‘thefunction N.

—-— -. ——. —.. —
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At any rate, proceeding on the discussion of the particular solu-
tion, one observes that in twice differentiating equations (B17) to (B19)
to arrive at a third-order equation for one dependent vsriable, the non-
homogeneous term N necessarily will contain second derivatives of the
A functions. The algebraic operations involving the regularized func-
tions f, g, and h durtng the process do not affect the nature of the
Singularity. If the second derivative A“ is computed from the leading
term in the A functions, it iS pe~ssible to replace N by A“ ~
equations (B28) for order-of-magnitude fiudy. Again, consider the
second-order functions: The leading term of the A functions is

Q= 1

‘e-es. 10~(e- ‘so)e- e so

Hence,

.

A“ x
1

( )
10g?(e - eso)

e- es. 3
.

~ substitution into equation (B28),
-

J’10g3 (e - eso)

V1,P2,1 2 de
e- eso

m 10g4 e - eso)(

( )%k
V1,2U2,2= e - %’0

(

z 10~ (e - eso)

(‘ 10g2 e - eso)

de

(
e-

gso)uk+l

de

(B32)

T%US the second-order fwction c~nta~s terms of the order (
10g4 e - e

)
?

‘o ‘

( )whereas the first-order one contains only log e - 9s0 .

————
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In view of this evidence, one is led to make the
the leading term in the singularity for the kth-order
form of powers of log (e - eso),,that is,

.

43

assumptions that
function takes the

and tkt ~ > sk-1. Consider the combination uj%- j in Q=>

>,

‘hil-e‘hecombwtion‘s ‘%-3 h Q%becomes

‘J”-% :
ljog(e - ,.OJJ’,+%P

e - OsO

Therefore
(

Q~ has a singultiitymuch stronger than t3- es. 2 ,
)Q2k

and the contribution to the leading term of N iS onlyby ~. TO

ascertain what choice of the index j will give a Himum value of

‘j + %-J
requires, however, more than the monotonic increastig property

assumed. For instance, if the second difference of the sequence sk is
assumed to be of the same sign throughout, a positive one requires j=o

and a negative one requires j to be appro~tely q/2 for sj + Sq-j

to attain a maxhum. If the former is true for the present case, the

~ ~g (e - eEo_Jsq.highest combination of uj~-j wo~d be uo~ -

With a similar argument, the leading term of Qn iS then

QmX Pl”k?
.,,. f,.

,-

... , .“’.x~Og( e-ego]y+l.”’.” , ..,”...,.,.. . ..,.. .’,.,lf ,

D

.- .-— .—— .—— .-. ..— ._. —— ..__— _ ——— —c. ...
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Hence,

NACATN 2505

e - e~o

By substitution into equation (B28)

J’[10. (e - %fl‘+2~e
‘k,l“k+l,1 % e - e~o

(‘k,2”k+l,2 % e - ‘so
~ak ~g (, - eso~%+l

[ (
e

)

ak+l
- eBo

de

‘k,3“k+l,3 ( )[z I.g e - es.
~13 (e - eso’jl~’

de
e-e so

% p (e -.,so]sk+3
.

> (B33)

If the solutions in equations (B33) hold true, the second difference
of sk is nil as the sequence sk is now increasing linearly with k.

The combination of u3%-3 then becomes indifferent to choice of j,

so the result (B33) has no contradiction. The derivation is thus .

— -—— — .——- —--- —
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justified apo”steriori. Formulas (B32) are seen to be given by equa-
tions (B33) with k = 1, S1 = 1. One concludes by mathematical induc-
tion that for the (k+l)th-order function, its singularity has the

leading term O {~og(e-eso]’+~}. ~

The nature of the differential equations for the kth-order per-
turbations as assumed ~y equations (Bl) to (B3) having been clarified,
it remains neti ‘toinvestigate the proper boundary conditions and the
results thereby arrived at. Generalizing equations-(23) and (24) one
has

(B34)

w

r-)
r%n

n=

()

des
= r—

r

~ e.e~
(B35)

rn% e=e
n=o s

Since the differential equations mqst be numerically integrated from
the initial point, let equation (B34) be examined first. Expanding
into a power series of r near r . 0,

,, .
. .

J-JR+.*= .,=
o

(B36)

————— --—--————.—-. —— .—.-—___ —.——. .. —___ _
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Assume now that the shock-wave shale is regular and also representable
in power series in r. Then

if-eio=ew-ewo,( )+%+tan
dr

x‘1 d%wo

()

(-l)n’ dewo ~+1
#+tmrF= .—

n=l ‘! ti n=O

.

where

/
with d%wo (@

at ewe. After

~ d%wo
*n=—— for even

n! d@

representing the nth

substitution equation

n>O

,.

derivative of (3W evaluated

(B36) becomes

...

,,

with d~o/d@ likewise representing the nth derivative of ~

evaluated at ~o. Regrouping the terms, one gets the expansion of ~

in ascending powers of r,

(B37)

.

.

_ .-——.—
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where

47

(B%)

where

Inasimilarway~ at 19

‘o =

= ew is obtained:

.

(MO)

and, in turn,

eo=o
1

(Bh2)

with dnuo o/d@ representing the nth derivative of ~ evaluated

at ewo. fiiththe help of expansions (B38) snd (Bkl) for u and

sbdlar ones for v ~d p, the,coefficient of @ in two sides of
equation (B34) may be equated. The proper initial point at the shock
wave is then readily derived:

( )‘k)vktpk e=e (
= ww,~ - ‘o,k’vw,k - Vo,kjuw,k

)
- ‘o)k (B43)

W. e=ewo

— -.————..—— - -— —.-—. —
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ti eWdiOn (B43) the V’S ~d O’S are the coefficients for v
and p, respectively, corresponding to the V’S for u defined by
equations (B39) and (B41). They are defined in exactly the same manner
except that u is to be replaced by the variable in question.

With the initial point specified by equation (Bk3), the differ-
ential equations may be integrated numerically and the three arbitrary
constants in the series form near the singular mint 13= 13so determined.

Consider now the quantities when the body is reached. The left-hand side
of equation (B35) may be rewritten as

m

E #vn

n.o

by defi@ng

and

1
‘-o = ~

(B45)

x J,”(Bh6)
~u_Z=O, for-n+O

l+m=n

,-

Each term in Xn therefore contains, in general, quantities of the

(form e - ‘SO)~“~e(e-‘soJjk nesx e - e80. me qrtaut con.

elusion now presents itself: If the shock-wave shape is assumed to be
regular, the body shape must have a singular point at the vertex. An
expansion of the body shape in power series of r in that neighborhood
is not possible. The previous method cannot beused to obtain the
higher-order derivatives of es = es(r).

“

,-

———
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The approximate behavior of the singulsr body shape nesr the
vertex to produce the assumed regular shock
consideration. Writing out the first three
has

may be seen by the following
terms of equation (B44), one

(B47)

2

(]

V. U1 up
—+— + . , ●

G-% %

AS previously shown,

’02 0(’ - ‘s0)

1-1o% “(l)

‘,% “E - 8s0)’0+ (e - ‘Sou + 0(’)

ulxo~.,(e- e.o] “

V2 x OK - eso)i0ge4(e - esofl + 0(1)

U2 . o&3e4~ - ‘SojJ

Equation (B47) thus becomes

[~)”=”s%”~ - ‘so) ‘rs~(l) + “K” - ‘so) 10~e @ - eSojJ} +

r:2p ‘“k - ‘so) ‘oge k- ‘d +

●
o~ - t9so)loge2(e - @SojJ + OF - ‘So) l-o.e4(@ - esojJ} + . . .

.

-. —..—--— .. —.._ __ ._ .——. — ..—— .—.—. — . _a .._ _ —. ..._..._
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or

(%),=6:OP - %o)+.s{o~- %.) 1%, (e - e.o] ,.(l}+

The derivative

at the surface,

e

Hence,

de~

I having been shown to be a fini~e quantity
~ e~so

one may assume

des
-eso~—

&c
rs + Higher-order terms

,=%0

(B49)

[( ) 1
rs20rslo~4rs +... +.. .

de~

I

rsO(l) + O(rs2 )( )3 loge4rs + ... .lo~ .s + O rs (B50)
r r fJ&s

z

Equation (B50) indicates that the body surface as defined by ,~ = ,~(r)

must have logarithmic sangularities near the vertex. Expression (B49) is .

also found to lead to no inconsistency.

Conversely, in the mud case when a regular body iS given, the
shock wave caunot be represented regularly without contradiction. It $
must have a singularityy at the vertex. The nature of the singularity

presumably would likewise be logarithmic. b
.

‘.

— —— .. —-— -———- — —--
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The existence of a finite first derivative de~/ti as obtained

in the section “Integration of Perturbation Equations” is fortunate.
By regarding the perturbation as the asymptotic solution which is
correct when r - 0, the ratio of the initial rsdii of curvature may
be found in spite of the singularities when higher order is considered.
It may be pointed out that the “smallness” of r should be measured
by a proper scale, which, in this case, is obviously either ~ro

or Rso neither of which, by hypothesis, should be

may recall that in the
perturbation equations
becomes:

above-mentioned section when
are reduced to dimensionless

~_%+lr~ .—
cc 2 %0

and simUar expressions canbe obtained for
of the parameter /r Rwo verifies the choice

V and

zero. ~ fact, one

the ftist-order
form, the expansion

.

P. The appearance
of scale stated above.

-—— .. . ——-.. —. .— .— . . ...———-.——.—- .-— —————-— —-————--— — -
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.

.

.

TABLE L - COKFFICIERT FUNCTIOHS F, G, AlIllH AND

vARIAHm3E, 11,Am{

.

(da) ‘1 ‘3 ~
G.2 G3 HI % H3 E n I

e% . 10°; U%~ = 0.40; w = L@ol

68.653 0.28530.2861-65.2270-3.82165-3.7S2-167.= -g.6312-9.484-o.0210.6591.m
69 .357 .2878-44.0644-T.7142-2.4677-104.452-19.~o -6.= -.037.nl L896

:
.2305-8,7930-7.6336-1.7233-70.4940-lg.439 -4.275-.066.g06 2.83

:2 .B% -=.9179-7.W77 -1.3655-53.1359-17.906-3.333-.lm 1.0612.699
.29&l-18.7736-6.4205-L1503 -42.645a-16.454-2.~

.3598
-.1401.2143.d3

.@a -u5.9&36-5.9278-1.0046-35.5@4 -U.- -2.365-.l&l1.3653.475
2; .3764.3019-13.93ci3-5.5186-.8984-30.3492-14.W ~:.;cl-.2351.51.53.866
62 .3933.3051-12.3772-5.1754-.8173
61 .4105.3095-Ill% -4.8840

-26.3985-13.352
-.7’528

-al 1.6644.a7
-23.2526-12.623

.4281.3~9 -:;.% -~:%6
-1:656-.3521.8u?4.648

; .4461
-.7m4 -a.6999-11.993-1.514-.4181.9585.040

.3157
.4645 ::~~3 :~gg -~.W -L395 -.* 2.1035.42

.3u6 -8:6397:4:@14
.4833.3237-8.0481-4.0530-.5873;g:~~ %:%

-L274 -.5652.2475.825
-1.1~ -.6462.3906.21.9

$ .%26 .tio -7.5374-3.@o -.7595 -10.146
.5=

-1.097
.334

-.W 2.5316.614
-7.qwz -3.7686-.5349-12:7TT3;;.79g-L@37 -.8232.6Tl7.010

54 .5428.3372-6.7w7-3.6463J.5E
53

-1.L7262
.5638.3422-6.mk -3.5357-.437 -10.80n-9:1904

-.935-.9192.8@ 7.407
-.863-1.0192.9467.805

.5854.3474-6.0453-3.4354-.4762
z ;$2 .3530

-9.9824-8.W -.807.1.1243.0818.204
-5.7695-3.3440-.4603

50
-9.23n -8.6901

.35@ -5,5192-3.2606-.4458
-.749-1.2343.2148.604

-8.5611-8.4535
;pw; .36x -5.-37-3.I.843-.4W -7.943 -8.2425

-.695-1.3483.3469.lx5
-.643.1.4673.4769.407

$ .3716-5.0889-3.1147-.4204
.7049.3785-4.9023-3.0511

-7.3762-8.0448

g
-.W -6.8452-7.8607:% :::% ::E 1%

.7315.3E58 -4.7316-2.9X9 -.3W -6.37rL
-4.5751-2.9399

-7.@381 -.502-L8513.85210.617
.7592.335 -.3W -5.W -7.524 -.45a-1.9883.9731.1.021

44 .7881.4017-4.4313-2.8917-.3E03 -5.50= -7.3n4 -.416-2.~ 4.C92u.426
43 .8182.4104-4.2987-2.8482

.8W7 .4u6
-.3n9 -5.l@4 -7.W4

-4.1763-2.8c@
-.374-2.2744.~ U.8X

:
-.3641 .4.7402-7.0875

.M29 .@% -4.0630-2.7739
-.334-2.4.234.33 12.236

40 .4399
-.3569 &Z; -6.9558

.9175
-.294-2.5764.435ra642

-3.9591-2.7@ -.3500 -6.8!a3-.~ -2.7334.54513.048
39 .9540.4511-3.8636-2.7159-.3436 -3:7471-6.704
38 .99?3.4632

-.=6 -2.8934.65213.454
-3.7700-2.6929

3’7 .47&l
-.3375 -3.4473-6.5935-.l-r(-3.0574.75713.86cl

1.0333 -3.6957-2.6T36-.3318 -3.15s9
L0765 .W -3.6on-2.6575-.s5

-6.48s -.m -3.W 4.86014.266
-2.8838-6.3745

~ 1.1224.5046-3.9337-2.6469
-.@ -3.3964.96114.672

Lln4
-.3214 -2.&67 -6.2695

.5a36-3.4653-2.6xB
-.059-3.5n.s.oeh15.078

-.31.66-2.3~ -6.165
# 1.2238;;:3

-.019-3.7495.15715.4a4
-3.4014-2.6363-.m -2.1052-6.0678

32
.022-3.935.s3 15.890

L2801 -3.3417-2.6374-.3078 -L8581 -5.9700.064-4.u65.34716.36
31 1.34M .5774-3.a359-2.643p

1.4065.5998
-.3037 -1.6145-5.8T~ .107-4.3045.44016.701

- .2337-2.6532
: L 4780 .624h 3

-.m -L3734
- .I.849-2.6695

-5.7767.152-4.4955.53?17.106

@
-.?362 -1.I.332-5.fm5 .- -4.6905.&4 17.510

1.5561.65ti -3.1393-2.6894-.W -.8923-5.5%0 .248-4.8M5.n6 17.914
2’7 1.6420.6920-3.@K6;;.715;
26

-.@35 -.6488-5.4842.W -5.0895.809lB.317
1.7370.n57 -3.0565 -.2864 -.4011-5.3933.355-5.2935.90118.n9
L8430 .7535-3.0196-2:@87 -.a334 -.14&J-5.2790.415-5.5015.99619.320

?4 1.9*
:%;

-2.9849-2.8364-.2806 .u87 -5.1704.479-5.m 6.@4 19.519
23 2.Cg-p -2.9527-z.~7 -.2780 .3969-5.0554
22 zB21 .9022-2.W -2.9558-.2754

.549-5.9276.U6 19.917
.69% -4.9329.@ -6.1456,303a.31.3

21 2.4322.9694-2.8948-3.0360-.2730 Lou6 -4.8CQ7
xl 2.644’61.0472-2.8693-3.I.257

.n.7-6.36T6.41620.706
-.27& 1.36!55-4.6555.82J-6.5936.53721.@5

19 2.89981.1422-2.*5T-3.23& -.2696 1.7619-4.4951
18

.940-6.8246.6692L4793,=35l,- .-2.8240-3.3523;:% 2.=6 -4.31461.093-7.~ 6.814=.856
3.6101L 4C91 -2.8ti-3.4947

:2
2.7632-4.l@5 1.261-7.3006.97522.~

4.1304L606a -2.7867-3.6617-.2631 3.4423
v 4.84741,8781-2.7710-3.8YW

-3.86901,491-7.5477.15722.582
-.2616 4.~

14 5.gon2.a19
-3.5970u801 -7.8m7.36522.922

-2.7574-4.c955-.26w 5.5845-3.2- 2.254-8.0617.60723.239
13 7.6459.z.9~1 -z.7ti-4.3741-.m 7.5661-2.83192.983-8.337.89123.524
12 u..03614.26!33-2.73n -4.~ -.@30 rL.3486 -2.31(y 4.409-8.6I.28.23123.764
n 23..34338.1= -2.731.2-5.13a3. -.2574 22.321.7-L63s7 8.597~.: ;.~6 23.934
10 ‘m . -2.7@ -5.6n3 -.’?571 - ------— m . --.—

—.. .—. ..— .—— .. .. ——.—————.—
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mBLE l.-COE=?T2~FUWHOH2 F, 13,AIiD HAHD

vARImm2E, 11,ABD~—cmtimmd

39.7d
39.5
39
38.5

:.5
37
36.5
36
35.5
35
34
33
32
31
30
29
28
27
26
a
24
23
22
21
20
19
18
17
16
15
14
L3
L2
Ll
Lo

%.363
26
&’.5
%Lo
24.5
24.0
23.5
23.0
22.5
22.0
2L5
2L.O
20.5
ao
L9.7
L9.O
L8.5
L8.O
17.5
L7.o
L6.5
16.0
L5.5
L5
L~.fI
I.k
L3.5
L3
L2.5
L2
LL.y
n
LO.5
Lo

0.8-348
.8944
.9161

:%%
.9Tj8

1.0316
1.0238
1.0M6
l.qlm
1.C940
1.14A1
1.1975
1.2547
1.316L
1.383
1.495
1.!3332
1.6196
l.-f’lx
1.%216
1.9413
2.0768
2.2323
2Jw3
2.6E59
2.8318
3.L963
3.s937
4.U5
4.833
5.895
7.639
1.088
1.338
.

%%
1.6847
1.7453
l.m
1.8734
1.9423
2.0152
2.w@3

::%

2:4642
2.m
2.7037
M3365
2.9&%
3.1542
3.3422

::$

4:*
4.&o.8
5.2774
5.@3
6.6w2
7.617u
9.033s
U.ql
Lb.%
Il.=
m.~
.

o:%

.2637’

.267’3

.mo

.2@8

.2786

:2%
.2910

:%
.3M9

:%%
.350B
.3652
.y310
.3985
.4181
.4401
-m
.4937
.*7
.5652
.6u0
.6664
:%

.936
1.IY35
1.330
1.TL9

::%
.

o:g~

.Z24L2

.23022

.23G5

.2b346

:%

.27’57-1

.*38

.-

.30728

:=

.365=2

.*38

.W

:4%
.-
.52742
.5Z52
.62732
.6650

:EE
1.0597
1.3007
L.7010
2.4$91
M&37
.

%]G21%IH11%IH31; l~tt

.55.%20

.Y7-G9

.21.831

.15.989

.I.2.w

.1O.8L7
-9.421
-Q&J
-7.394
-6.%1
-6.444
-5.6531
-5.@5
4.W.6
JU2734
-3.9391
-3.7546
-3.55fn
-3.391k
-3.2b&J
-3.E50
-3.orfb
-2.9232
-2.W03
-2.76TL
-2.7023
-2.6W9

::?$
-2.5097
-2.m
-2.4455
-2.42C9
-2.4.013
-2.m

-20.W
-22.340
-8.O$ZU
-6.19L3
-5.0940
-km
-3-m’3
-3.%J5L
-3.=%2
-2.934
-2.135-9
-2.6z4
-2.5220
-2.4u6
-2.3L62
-2.2331
-2.L631
-2.0933
-2.0376
-M&s
-1.9393
-~.m
-l.&@
-1.&41
-1.mk
-1.763b
-1.~
-1.n~
-1.m
-1.6730
-1.@n
-1.6444
-1.63%
-1.6323

-9.4G3
-17.078
-16.6?4
-14.435
-12.626
-11.231
-10.I5$
-9.*
-8.547
-7.550
-7.444
-6.6369
-6.02L0
-5.5377
-5.UJ33
-M&n
-4.361
-4.3622
ymq

-3:9226
-3.-
-3-7589
-3.7093
-3.63YB
-3.6749
-3.65’01
-3.m91
-3.7945
-3-3902
-4.oa6
-4.1%23
-b.a
-h.=
-5.HX

-
-8.246
-3.759
-3.539
-2.631
-2.123
-1.794
-1.5fQ
-1.389
-1.255
-1.147
-1.059
-.=3
-au
-.7439
--6824
-.6323
--59@
--5559
-.5262
-.*
-.4783
-.45-33
-.4417
-.4265
-.4130
-.4010
-.3903
-.m
+T2@4

-.3584
-.W
-.34&2
-.3446
-.3422

-15&og

-55:704
-39.2M
-30.244
-2h.305
-20.52L
-17.546
-15.236
-13.383
-11.8%
-9.4803
-7.f59a
-6.2EFx
-SJ.392
-4.1691
-3.*
-z58L8
-1.9X7
-1.2745
-.671?0
-.W9
.&f24

1.G522
,1.6541
2.2%3
3.CW4

w%
5.931
7.417
9.%9
1.2.947
19.435
38.260
.

-26.308
-48.100
&7.282
-41.128
-36.uL8
-3.393
-29.184
-26.7L9
-2b.’rio
-23.022
-2L.*
-19.2722
-17.4840
-16.0553
-14.8838
-13-9ozo
-13.o@5
-r2.3361
-n.6948
-11.lz20
-10.6027
-1o.L252
-9.67%
-9-2%-6
-8.8484
-8.44s
-8.0414
-7.e
--i.lm
-6.7q?
-6.in
-s.565
-4.838
-3.944
-2.@04

-
-5.63aI
-10.045
-10.2L9
-9.4532
-8.71k2
-f I1.om
-7.4s73
-6.9679
-6.5720
y15

-5~6292
-s.4s06
-5.m37
~~.o&4

-4:7614
-4.6553
-4.m
-4.4$%3
-5.4416
-4.4031
-4.W
-4.3j’46
-W35-f
-4.415a
-4.4640
-4.535.3
-4.6308
-b.?’%a
-4.9130
-5.W
-5.3599
-5.6TL3

“,

-3.9ar
-2.7304
-1.S$XXI
-1.5947
-1.3448
a.iw
-1.0424
-.!a313
-.wm5
--79959
-.74W
-.-PJ77
-.662WI
-.62849
-.m
-.37353
-.5%@
-.53062
--5WB
-.49545
-.46W5
-Awn
-.h~
-.4M’p3
-.43727
-.b2e86
-.42L39
-.41485
---
-.40445
-.4CX%L
-.39774
-.35591
---

-64.3L6
-36.016
-23.rL8
-U.359
-jag

-4:X255
-2.4707
-1.1103
.03L2
1.cf18L
2.0126
2.8%3
3.72a

;$

7.0327
7.9636
8.941o

g%
12.544
14.W2
U.*5
18.1@J4
20.*
2M45
29.661
37.049
k9A$3
Zw33
144.09

-—-—

-19.7-L7
~~.?g

-34:364
-3.741
-29.377
-Zi’.m
-2.5.53
-24.o1o
-a. 6s3
-mm
-20.389
-lwa
-18.538
-17.725
-16.970
-26.26)
aJ.~

-14:320
-13.710
-13.1o6
-if?.ya
-11.m
-U.*
-10.%
-9-9356
-9.@3
-8.3540
-7.4628
-6.4646
-5.@3
A.0L28
—-—

-23.345
-16.165
-9-73L
-7.071
-5..576
-b.~
-3.935
-3.382
-2.930
-2.638
-2.362
-1-!=%
-l.x@
-1.3273
-1.1067
-.918’3
--7%.2
-..%28
-.469
--33a
-.2L17
-:g

x%
.b2&9
.%46
.7@
.9733

1.235
l.nj’
2.062
-2-W

z%
.

-14.104
-9.%07
-6.6516
-5.W27
-b.wcl
-3.3698
-2.8263
-2.3940
-2.0377
-1.W
-1.4719
-1.2378
-1.=
-.QZ3
-.G472
-.46826
---
-:Jj6?g

.21892

.40143
;%

ldlca
l.m
1.6208

H%!
3.X232
4.0455

2%%
16.7&I
_—— _

-0.023
-.037’
-.078
-.130
-.192
-.265
-.349
-.444
-.550
-.667
-.795
-1.MB
-1.422
-1.W
-2.240
-2.724
-3.269
-3J3X
-4.495
-5.19S
-s.956
-6.777
-7.661
-8.610
-9.627
lo.7_L6
LL.wo

%%
15J37
17.39
19.01
20.73
22.62
24.65
——

1.840
2.OE$
2.676
3.2%2
3.839

j:~6
5.739

‘%%
7.652
8.970
1o.323
L1.713
1.3.141
14.610
16.L21
17.677
19.279
20.935
!22.640
2k.408
26.243
28.154
30.150
32.244
34.h53
36.795

~:f

48.i7
~.g

63:*
66.1o

-0.059
-.094
-.150
-.2L5
-.288

3%

-.561
-.670
-.789
-.917
-1.054
-1.201
-1.3s7
-1.523
-1.659
-1.W
-2.083
-2.291
-2.510
.2.740
-Z.m
-3.234
-3.m
-yJ

-4:374
-b.69b
-5.oa
-5.380
-5.748
-6.134
&.*
---—

3.147

%?
9.202
10.W
12.6L8
14.349
16.c-31
17.831
19.598
2L.3ea
a.m
28.743
32.542
36.418
40.373
bll.m
48.5LL
52.@9
%.936
61.259

%:%
74.536

%%
88.158
92.703
97.233
.01.65
.*.92
.39.97
.13.64
.L6.76
,19.01
,-— —

2.617 9.033
2.952 10.275
3.L$2 12.034
3.960 13.810
4.469 15.584
4.930 17.352
~.:~ l$ll;

6:535 22:648
7.063 24.414
7.598 S.18L
8.140 27.949
8.691 29.n8
9.251 31.487
9.820 33.25.5
10.400 35.019
LO.992 36.779
L1.597 38.s32
L2.a6 MM75
L!2.851 42.005
13.303 43.717
14.173 45.406
14.855 47.o67
15.581 48.692
16.~b 55.273
17.097 51.793
17.935 93.256
18.753 54.63o
L9.647 55.9a3
22.594 57.041
2L,6@ 58.02L
22.691 5%799
23.M8 59.32.2
a.lm --.—-

1
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mKcAElm E, q,Am g - continued

em-l= 100; llJc = O.&; 1P = 3.30

-9.37W
-%1249
-5.2&l
-4.1433
-3.3839
-2.8469
-2.4506
-2.14a2
-1.91.13
-1.Ta6
-1.4385
-1.2390
-1.0914
-.%@
-.m
-.8143
-.7526
-.6997
-.6536
-.6I28
-.5764
-.5440
-.5173
-.4w6
-.47&l
——-

-3.8&G?
-5.5mf3
-6.4768
-6.8226
-6.8w4
-6.&78
-6.7030
-6.5500
-6.3867
-6.2228
-5.9112
-5.6337
-5.3943
-5.1522
-5.0254
-4.@20
-4.7909
-4.72H
-4.6834
-4.6791
-4.7110
J+.7836
-4.9035
-5.@35
-5.993
-———

-.

20.s34
20.0
19.75
19.5
lg.fi
19.0
18.75
18.5
18.25
18.0
17.5
17.0
16.5
16.o
U.5
15.0
14.5
14.0
13.5
13.0
12.5
1.2.O
11.~
11.0
10..5
10

:.3M~

2:5149

2.7354
2.W
2.7331
2.81.11

2.W
2.ml
3.0679
3.26?5
3.4813
3.73C0
4.0163
k.3~
4.7476
.5.2276
5.8219
6.5792
7.9335
8.972
11.045
14.479
21.314
41.748

.

).171.l.
.1738
.1776
.1816
.1857
.lW
.1945
.1993
.2044
.2097
.=4
.2346
.2491’
.2673
.2M9
.3W
.3424

:?%
.4904
.578
.no

.929
L.364
?.699

m

-2.OHM
-1.~1
-1.4976
-1.3175
-1.lea
-1.0764
-.911
-.9207
-.8615
-.8111
-.7296
-.6665
-.6162
--5755
-.5418
-.5U7
-.4901
-.4701
-.4531
-.4388
-.4270
:;4$;

-.4040
-.4005
—--—-

-34.084
-22.652
-12.965
-6.726
-2.335
.963
3.568
5.715
7.555
9.175
12.CX33
14.%3
16.993
19.497
z. 181
25.178
28.EJA
32.796

37.977
44.694
53.-
67.4X
89.692
133.563
263.760

m

-18.u34
-26.2X?
-31.141
-33.019
-33.514
-33.330
-32.806
-32.109
-31.328
-30.509
-28.866
-27.!284
+5.788
-24.369
-23.014
-21..7O3
-20.415
-19.128
-17.817
-16.451
-14.96
-13.417
-11.ao
-9.658
-7.318
-— —--

-9.690
-8.199
-6.767
-5.732
-k.g3g
-4.305
-3.781
-3.3%
-2.$Y14
-2.616
-2.040
-1.554
-1.124
..7s
-.349
.029
.421
.845

1.327
1.902
2.634
3.645

5.W
8.176
16.663

.

2.965

%?
:.g

3:847
4.042
:.:g

k:630

5.W
5.428
5.834
6.247
6.668
7.@3
7.539
7.993
8.463
8.9z
9.461

9.997
LO.fx%
U.173
u.830
L2.548

1.3.457
14.057
14.917
15.&l
16.691
17.583
18.4n
19.357
20.236
21.111
22.843
2k.zzl
26.237
27.891
S.5M
31.085
32.612
34.082

35.W
36.813

Y3.039
39-143
40.094
40.849
41.359
—-—

-o.11o

--@
-.156
-.185
-.21.6
-.248
.282
-.318
-.355
-.394
-.478
--m
-.665
-.770
-.8$2
-%.W1
-1.I.28
-1.263
-1.406
-1.557
-1.n6
-1.884
-2.062
-2.259
-2.449
-----

-26.13
-26.81
-34.72
-39.31
-41.97
-43.38
-44.01
-44.12
-43.85
~g.$

-41:63
-40.65
-39.52
-33s8
+6.gk
-35.543
-33.96
-32.31
-30.54
-28.63
-26.96
-2k.31
-21..85
-19.16
-16.18
-—---

-6.66
-6.57
-5.50
-4.62
-3.88
-3.24
-2.66
-2.13
-1.64
-1.17
-.n
-.25

:%
1.18
1.72
2.32
2.99
3.77
4.72
5.91

7.%
9.T3
13.44
20.56
41.47

m

-0.197
-.198
-.zL8
-.239
-.26J
-.2&
-.305
--328
-.352
+7;

-.430
-J+57
-.485
-.514
--544
;:&k

--637
-.670
--704
-.739
-.7-74
--810
-.846
-.882

+%

3.045 23.ya
3.m 23.375
3.151 24.234
3.2$ *.ra
3.365 26.018
3.477 26.919
3.591 27.816
3.707 28.704
3.&k 29.580
3.gk3 30.442
4.063 31.23J3
4.185 32.n5
4.309 ~.$wl
4.434 33.704
k.fil 34-461
4.690 3.5.190
4.822 35.893
4.55-5 36.555
5.093 37-182
.5.233 37.768
5.377 38.3=
5.5?5 38.W
5.678 39.250
5.836 39.636
6.OCHI 39.961
6.177- 40.228
6.349 .

-2.8&3
-2.E!JX
-3.742
-4.239
;:.&z

-4:783
-4.826
-4.840
-4.837
-4.825
-4.&8
-4.790
-4.775
-4.765
-4.761
-4.766
-4.781
-k.807
-4.846
-4.wl
-4.969
+.om
-5.169
-5.305
-5.471
-——

4.499

::?%
4.$n8
;.1#

5:653
5.943
6.263
6.617
7.o13
7.458
7.964
8.545
9.219
10.014
10.962
12.u.6
13.556
15.396
17.846
21..268
26.3E!8
34.504
%.993
L02.M

.

15.o128
1s.0
14.8
14.6
14.4
14.2
14.0
13.8
13.6
13.4
U.2
13.0
12.8
12.6
12.4
12.2

:::
11.6
11.4
11.2
I.1.o
10.8
10.6
1o.4
10:2
10.0

0.109
.108
.113
.lla
.122

:2
.139
.146
.154
.162
.172
.183
.1%
.21.O
.228
.249

:%
.348
.403
.479
.5gk
.-m
L 167
2.312
m

-1.Ill
-1.020

.109

.Em
1.357
1.720
1.935
2.185
2.337
2.454
2.547
2.625
2.6X
2.744
2-’m
2.&8
2.864
2.897
2.927
2.954
2.979
3.022
3.022
3.040
3.055
3.065
----—

-0.&k
-.818
-.736
-.674
-.622
-.%0
-.545
-.516
-.491
-.470
-.451
-.434
-.42iJ
-.407
-.395
-.385
-.377
-.369
-.362
-.355
-.350
+:

-.340
-.33a
-.337
---——

22.64
23.81
39.41
51.43
61.36
70.15
~:

93:9
lo2.q
11o.62
119.Mi
1.30.09
141.53
154.56
169.65
187.51
209.08
235.&
269.85
31k.Cm
377.47
470-76
&5.42
934.09
.@5.35
m

.,

-
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TAmBl.-~mmm’crmm F, 6, AED EAED

v~ t, n,moc-calltw

0.3433
.3524
.3704

:%’%
.@@
.4466

:%?

.:%
.5539

z
.@73
.6s37

:%
.7403

:E
.8397
.el@
.9U5
.5570
1.cO13
l.oflFa
1.oyy7
1.I.S47
1.2143

%.%
1.42e.5
1.5155
1.6127

;:!%
1.9YJI
2.ls91
2.3%
2.5593
=@7=
3.2766

2:%
5.5M5

1::%$
2%861

.

O:sl$

1:%
l.wb
1.16S9
1.2374
1.3M8

kg
1.5792
1.6S07
1.817’3
W@
2.1327
2.3337
2.5764
2.67Q
3.2575
3.7.523
4.4591
5.49&
?.21n
10.6372
2u.13@

.

0.’2594
.m
.2-(46

:gg

.’28s9

.2943

:%
.3037
.3141
.31$$
.32%
.33?0
.3Y@8
.34J%J
.3537
.3618
.3705
.m

:%
.4119
.4244
.h~
:=

.43%

.5W

:E
.5752
.6041
.63TJ
.674s
.r175
.7677

:$%

1:%%
1.6
1.4&8
1.6597
2.0376
2.669
3.918
7.670
.

-1.O.3845
-9.a.54
-8.&b5
-8.1649
-7.%96
-7.O-E5
-6.6XQ
-6.2951
yg$

-9hbM
+.W34
-5.o184
-4.836
-4.6732.
-b.=
-4.3858
-km
-4.1431
-4.0358
-3.9364
-3.844a
-3.7%3
-3.67#
-3.6346
-3.5354
-3.470a
-3.bm4
-3.3541
-3.3014
-3.-
-3.20%
-3.1630

::%J

-3:o181
-2.*
-2.9s22
-2.9346
-2.9U.I
-2.8W
-2.87c6

:%?$
-2.Ea53
-2.81.57
-2.80W
-2.&34

-0.%02
-.7826
-1.c$m

~~$
-l.@

-1:*
-1-*
a. 6~91
-1.6422
-1.6Y32
-1.-
-L67Y3
-1.6796
-1-66X3
-1.6S18
-1.6305
-l.&@
-1.6769
-I.6740
-1.6729
-1.6TM
-1.6701
-1.*
-1.6701
-1.6TL4
-1.67bl
-I.6w3
-1.6932
-1.65’01
-1.*
-l-mm
-1.m
-1.7377
-1.=
-1.mb
-l.&x%
-1.wb
-1.W4
-1.8970
-1.9389
-1-9867
-2.041k
-2.1039
-2.17349
-2.!3s4
-2.3539
-2.4649
-2.5946

0.2448
.246$
.’2s22

:%J

.2831

:%
.3161
.3340
.35U
.3718

:%

.45’?1

:%

,:~

1:Y270
1.9470
3.8057

-9.m3
-8.1415
-6.6323
->.7033
-5.0677
-4.6026
-4.2W
-3.9@4
-3. 9
#&

-3:2515
-3.1354

R
-3.0
-2.9
-2.%W3
-2.eG91

J-=%
-2.6
-2-=3
-2.5@4
-2.W3
-2.5293

-0.4826
-.4593
--m
-.3919
-.3759
-.3575
-.3blg
-.3=3
-.3165
-.*
-g

-.%04
-.2733
--2669

::3
---
-.2b55
- .24io
-.!2363
-.2328
-.2291
--=%
--=23
-.’agl
-J21!51
-.21.33
-.2106
-.ti
-.2057
-.2Q34
--’am?
-.lW1
-.1972
-.1s53
-.1935
-.1918
-.li03
-.1839
-.l~b
-.10s1
-.1849
-.1838
-l@
-.l&o
-.I.6-L3
-.lw
-.leo4

-2L7e2
-23.lm
-’a9.418
-18.2&
-16.493
-ls.cm
-13.7@
-12.EQO
-11.ab
-lO.’n-l
-9.97
-9.=

::%
-7.5M
-7.015
-6.g46
-6.107
-S.m
-5.305
-4.936
-4.p5
-4.252
-3.$=9
-3.617
-3.317
-3.m
-2.7bJ
-2.WJ
-2.183
-1.909
-1.635
-1.359
-1.079
--7’9
--w
-.150
J36
.486’
.@

1.37
l.m
2.368
3.&
k.o17
5.3M
7.3%
11.342
=.789.

-1.725
-2.341
-3.218
-3.EM
-L214
4.%)4
-b.712
-4.862
-J+.m
y&

-5:13
-5.149
-5.155
-5.151
-5.139
-5.I.2J
-5.036
-9.0S7
-5.033
-b.$@

kg
-4.863
-b.m2
-b.~
-b.jti
-4.642
-4.578
-4.511
-4.440
-4.365
-4.285
-4.193
-4.I.07
-b.w9
-3.93
~;.rg

-3:527
-3.376
-3.210
-3.025
-2.6-M
-2.X36
-2.322
-2.O.m
-1.670
-1.264
.——

-1.3341
-1.8%3
-2.3899
-2.5Y34
-2.5538
a%wa

-2.4245
-2.3b64
-2.2326
-2.2448
-2.2037
-2.1657
-2.14

r-2.12.5
-2.1140
-2.1123
&gJ
-2:lal
-2.=4
-2.2735

-2.?4S6
-2- w

-2.769
. —— ——

-1.458
-1.375
-1.237
-1.K26
-1.032
-.m
-.&
-:816
-.7%
-.705
-.696
-J@
-.%5
-.523
-.483
-.444
-.4C4
-.369
-.333
-.238
-.262
-.’2?7
-.191
-.1%
-.lm
-.033
-.045
-.007
.033
.074
.ll-I
.163
.211
.262
.318
.379
.446
.522

:H
.x
1.I.33
1.357
1.651
2.105
2.826
~.w
8.410
.

—-l-

1.932
1.932
1.938
1.9M1.9S1
1.975
1.*
2.Im3
2.017
2.031
2.044
2.05.5
2.C69
2.079
2.c@
2.10)
2.lc9
2.117
2.124
2.130
2.u5
2.139
2.142
2.1J+5
2.147
2.148
2.148
2.147
2.lW
2.143
2.140
2.I36
2.131
2.125
2.u9
2.112
2.I.04
2.096
2.037
2.078
2.0E8
2.C5$
2.048
2.039
2.03
2.@2
2.o15
2.(X9
2.(Y35
-—.

-0.176
-.’&
-.29
--3=20
-.38s
-.455
-.526
-J%
--6-%
-.769

::%
-1.038
-1.13k
-1.233
-1.335
-1.440
-1-*
-1.658

ME
-2.003
-2.12?2
-2.242
-2.361
—-

1.W
1.651
1.762
1.87-I
1.$91
2.105
2.ai
2.327

::+
2.45

2.7b9
2.8s7.
2.5n
3.W
3.148
3.2~
3.344
3.443
3.543
3.649

3:E
3.976
4.101
4.238

3.142
5.293
5.697
6.u3
6s33
6.s53
7.3n
~.g

8:623
9.004
9.3?3
9.76710.167
lo.g39
10.S’JO
I.1.’’%xl
u.%
11.%!-9
12.211
12.493
K.750
12.976
1.3.165
13.317>

.
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TAHL3 l.-COEWKtCIEl?I’FONI?!50NH F, G, ATE) H MID

VAHIAHWS t, ~, AH3 ~ - Contlmmd
,

(d&) Fl F3 ‘% G2 ’33 HI %2 - H3 L’ ~ !.

e.0-20°, ~O/c = 0.65, W -2.51
— —

-14.OC’2
-U .6145
-10.0189
-7.1CQ8
-5.lm3
-3.2917
-l.@@
-.2622
1.0690
2.3367
3.3734

::%4
7.3803
8.7772
10.W1

::%
16.u298
18.807b

2:$

%%
$.8MJ

164:428
.

-

-6.1995
-6.h793
-8.6989
-9.933-1
-10.6193
-10.9748
.11.1328
.11.1532
.ll.ca12
-10.9485
-10.7649
.lo.~1
.10.!2$36
.lo.o@
-9.7328
-9.4147
-9.0749
-8.7uM
-&=
-7.ti
-7.459
-6.973
-6.443
-5.865
-5.229
-4.724
-3.732
.-----,--

2.166
2.171
2.237
2.W
2.Y31
2.@6
2.331
2.607
2.@3

;:%?
2.911
2.W
3.@55
3.142
3.220
3.$93
3.377
3.k57
3.!H3
3.621
3.706
3.793
3.882
3.974
4.070
4.170
4.275

33.0452
33
32.3
32
31.5
31
30.5
30
29.5
29
28.5
28
27.5
27
26.5
26
3.5
3
2b.5
24
23.9
23
22.9
22
21..5
21
20.5
20

1.717”7
1.7245
1.8014
1.8326
1.9692
2.0621
2.1624
2.271!2
2.3902
2.210
2.f3557
2.&71
3.0385
3.2144
3.45+31
3.7233
4.0443
b.4272
4.892-7
9.4718
6.2I29
7.1971
8.57o2
.0.624
.4.o36
0.E!49
L.=
m

).1963
.1967
.2014
.2056
.21.25
.2190
.2263
.23kb
.2435
.B37
.2652
.m
.&a
.3099
.*
.3527

:%
.4531
.w36
.56%
.6552
.7767
.959
..263
..872
1.699
.

-5.2914
-5.2178
-4,5517
-4.0752
-3.7=7
-3.4381
-3.2145
-3,0314
-2.W
-2.7496
-2.6391
-2.5436
-2.W
-2.3676
-2.3232
-2.2663
-2.a5a
-2.1710
-2.3.313
-2.W53
-2.1%52
-2.0381
-2.o150
-1.%56
-1.9J3CKI
-1.9685
-1.9W
---—-

.0.6912
-.6326
-.6m!2
-.5399
-.4918
-.4531
AZL$

-.m
-.3526
-.3357
-.m
;:%

-.2867
-.277’7
-.’=97
-.2627
---
-.241.O
-.2k63
-.2422
-.2337
-.23y3
-.2336
-.2319
-.2308
.------

-3.@39
-3.035$
-2.52M
-2.I.289
.1.7933
-1.518!)
-1.Zr7m
-1.0483
-.843!2
-.6936
-.4653
-.28h3
-.1040
.mw
.26?-5

:%
.9231
1.1932
1.508
1.889
2.368
3.m6

?#J

L6:G3S
m

-1.2739
-1.3306
-1.7834
-2.0317
-2.1697
-2.2449
-2.2829
-2.W
-2.3036
-2.2373
-2.-3
-2.2740
-2.2630
-2.2534
-2.2462
-2.2k4
-2.2425
-2.24n
-2.2572
-2.2731
-z.@
-2.3262
-2.3@3
-2.4143
-2.4748
-2.5488
-2.6387
—---.-

-0.293
-.’296
-.331
-.367
-.404
-.442
-.@
--523
-.565
-.603
-.652
~:~

-.7W
;:%

-.937
-.985
-1.036
-1.087
-1.139
-1.191
-1.243
.1.295
-1.345
-1.39-2
-1.431

8.736
8.763
9.W2
9.440
9.795
10.151
lo.m
10.860
11.r+cfl
11.!m
U.896
12.2Z7
1.2.m

s:%
13.464
13.747
14.017
14.272
14.512
14.734
14.936
15.115
15.267
15.387
15.46s
15.470

13.058
1.3.231
13.744
14.277
14.819
15.363
17.933
16.435
16.s57
17.464
17.955
18.e
18.872
19.=
19.636
20.Q53
20.410
——-

:= 0.75;* - 3.36

T
.0.3972.381
-.4102.405
-.446 2.!+78
--k& 2.B5
-.5192.635
-.5.5’72.n7
-.5962.801
-.6362.836
-.6772.972
-.n9 3.060
-.7613.150
-.ti 3.242
-.8473.336
-.@Q 3.k33
-.9333.534
-.9743.639
.1.0103.7s0
---- 3.859

28.1798 2.6738 0.1536 ;:.;:$ yy; -0.474!3
28 2.7375 .lW ~;4&&
V.5 2.9-279 .1632 -2:6556 -1:7169
27 3.1414 .1717 -2.2766 -1.91.@3
26.5 3.3840

-.3672
.1818 -2.0b33 -2.0243

26
-.3381

3.6634 .1936 -1.8s41 -2.0936 -.3146
3.5 .2079 -1.7!zq’ -2.1372 -.2953
?5 ::s .=1 -1.&x?a -2.1643 ~:~4
24.5 .2U63 -1.nn -2.1899
24 ;:%!
23.5 6.1785

.2729 -1.4385 -2.=17 -.~y

.3075 -1.3743 -2.2361 -.24X
23 7.16T3 .3535 -1.3205 -2.2663 -.2371
22.5 8.5449 .4184 -1.~ -2.3o51 -.231>
22 10.L2327 :g -1.2391 -2.3555 -.2264
21.5 14.020 -1.21cKl -2.4237 -.=
21 ZYJ.837 -1.1W4 -2.s043

41.246 ;:%? -1.1746
-.2196

20.5 -2.6u2
20

-.21-@
m . -— -- —— _- -——_

-2.4775
-.36T3
4.7440

13:21
1:.C
a.628
26.194
31.325
37.331
44.631
53.970

$%
114.676
in .262
346.218

-9.1430
-10.4394
-1.2.9466
-14.4089
-15.230
-15.637
-V.7Z
-15.646
-15.370
-14.944
-14.383
-13.691
-12.8m
-1.l.m
-lo.~k
-9.399
-7.836

-2.65*
-2.W-2
-1.8962
-1.4364
-1.o28
-.650
-.*
.&

:E
1.346
1.s03
2.625
3.616
5.159
8.084
16.522

J_L- 1

, * t

es.. ‘230;uJc - o.~; w . 5.54-,

I
-1.1* -0.2755
-1.5183-.2496
-1.7753--=73
-1.9406..2106
-2.061.2-.1933
-2.1647-.18&.
.-2.2698-.1814
-2.Yz76-.I-@
-2.3915-.1765
-2.4633 -.1749
-2.541i9-.lm
-2.6388.-.1zz3
--------------

24.433
24.o
23.5
23.0
22.5
22.0
21.5
21.25
21.0

R?
20.ti
20

4.75910.1014
3.3274 .U02
6.08w .1232
7.W .1409
8.4827 .US6Q
lo.yJ28 .2039
13.982 .267
16.TI-7 .318
m.m .395
fp; .523

%2:030 1:$;
m ---A---

-0.5386
-.1TL8
.1101
.3019
.$38’L
.5374
.6103
.63W+
.6620

:%
.7033

“g.g
10G9
M-7.82
162.fx
210.42
2137.84
;:;;;

.%.32
8%.3K -
l-fslz02

m

-19.17 -1.82
-23.90 ‘, ‘-::L
-26.83
-28J0 .67
-28.19 l.a .
-27.34 2.85
-25.68 4.59
-24.n 5.5-7
-23.15 7.70
-21.54 1o.64
-19.73 16.33
-u.& 33.03
—-——- ~

-o.5172.47117.529
-.5352.53118.403
-.5562.60719.505
-.5762.@9 2Q.665
-.m 2,777 2L853
-.6132.86923.087
-.6282.*7 24.338
-.6343.01824.9T8
-.6383.07125635
-.6403.r2626.322
-.6383.183q.c@
-.628.3.2b227.%7
------3.303—-----,-..----

1 I 1 I I

=25=
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TAHLEl.- COEFFIClmTFuNCTIOHS F, G, AND H AND

v~ E, n, ~ ~ - Continued

e Eo = 309;~o/c = 0.35;IF= 1.515

44.123-i
44
43

2
40
39
38

::
35
34

;:
31
30

0.57560.2398
.y346.2415
.6L32.2472
.6431.2531
.6743.~~
.7069.2663
.7kr2.2737
.7774.28L4
.8156.2899
.8562.2989
.8994.3088
.9456.3196
.9%3 .33E
1.0488.3440
1.106s .;%1
1.1700 .3736
1.2392 .3908
1.3156 .4099
1.4004 .4315
1.4953 .4560
1.6025 .4839
1.7247 .5160
;.866 .5536

+2g w!

2:7586 :7$
3.1340 .8%n
3.63101.0366
4.322 1.229
5.354 1.51-7
7.066 1.997
.0.4772.954
!0.6865.827

=Im

,

-5.6* -0.4028-0.2647
-5.5395-.4’613-.2595
-5.2102-.6100-.2453
-4.9341-.7203-.2334
-4.6988-.8040-.2233
-4.455-.%88 -.2L46
-4.3179-.9197-.2069
-4.1614-.9603-.2s02
.4.0224-.9932-.1941
-3.8981-1.0203-.1887
-3.7864-1.0429-.1839
-3.6855-1.0623-.1794
-3.~42-1.0792-.1755
-3.~lo-1.0945-.17L8
-3.4352-1.1082-.1694
-3.3659-1.1213-.1652
-3.3024-1.1342-.1623
-3.2444-1.1470-.1596
-3.1911-1.1602-.1573
-3.1- -1.1741-.1549
-3.0974-1.1892-.1528
-3.0564-1.2052-.lm
-3.0189-1.2229-.1492
-2.9847-1.2426-.1475
-2.9536-1.2645-.1459
-2.9256-1.2891-.144.6
-2.9005-1.3167-.1433
-2.8782-1.3479-.1422
-2.8S -1.3833-.14L2
-2.8417-1.4235-.1403
-2.8277’-1.4693-.UB
-2.816-1.52L7-.L39C
-2.@083-1.58L9-.1385
-2.8031-1.@k -.L383
.------_------—----

1.51390.1919
1.5289 .1930
1.6584 .2032
1.8057 .2L55
1.9764 .2303
2.1778 .2484
2.k2G2 .2708
2.7L92 .2990

3.- .3355
3.6307.3846
4.2968.4536
5.3330.5574
7.0493.7309
.0.4651.079
!0.6782.L25
m m

-k.- -0.6533
-4.0623-.6959
-3.6648-.9447
-3.3764-1.0869
-3.1676-1.1730
-2.9873-1.2281
-2.&ll-1.2664
-2.7409-1.2965
-2.6508-1.3238
-2.~ -1.3522
-2.5L72-1.3850
-2.4692-1.4252
-2.42L0-1.4759
-2.4052-1.5406
-2.3885-1.6240
—--—- —----

-0.3194
-.3140
-.2781
-.25L4
-.2309
-.2151
-.20~6
-.1910
-.1822
-.l~
-.1693
-.1646
-.1610
-.1585
-.1%9
.-—---

.13.6739
-13.2030
.11.88438
.1O.77B
-9.7876
-8.$nz29
-8.1487
-7.44&
-6.8055
-6.2m
-5.6591
-5.1395
-4.6477
-4.1783
-3.7265
-3.2&34
-2.86aJ
-2.4374
-2.0170
-1.5944
-1.16M
-.7226
-.2612
.‘2282
.7570
1.3ku
2.co40
2.7815
3.7334
4.96X
6.6894
9.3956
14.549E
29.4903

m

0.55;N

-9.482C
-9.0055
-6.2917
-3.9464
-1.8409
.1649
2.18&
4.3070
6.67%
g.km
L.3.0L2
17.878
25.413
39.674
81,2&
m

1-1.63&l
-1.8696
-2.4651
-2.9077
,-3.2422
-3.kg72
‘-3.6927
-3.8422
1-3.9555
-4.0388
-4.0978
-k.1370
‘-4.1=
-4.1649
-4.1576
1-4.1381
-4.1067
!-4.(%45
‘-4.ol15
-3.9481
-3.8742
‘-3.7M5
-3.6912
-3.5828
-3.4@
-3.3236
-3.1706
-2.9995
-2.8084
-2.5942
-2.3534
-2.0820
-1.7744
-L.4246
-------

.0.9703
-.9359
-.8381
-.7523
-.6755
-.6354
-.5405
-.4797
-.4219
-.3664
-.3125
-.2598
-.2076
-.1554
-.1029
-.0494
.0055
.0625
.1223
.1856
.2535
.3273
.4085
.4995
.6932
.7241
.%84
1.0462
1.2742
1.%20
2.0291
2.fi34
4.1682
8.3384
m

-4.0531
-4.302a
-5.7816
-6.6285
-7.1031
-7.3365
-7.4001
-7.3343
-7.1600
-6.8870
-6.517
-6.046
-5.462
~:.::
.

-----—

-1.4287
-1.3811
-1.0407
-.7551.
-.m3
-.2&38
-.0240
.2219
.J+91O
.8Q28
1.190
1.713
2.512
4.m3
8.253
m

0.3810.8771.686
-.388.8691.674
-.410.8471.645
-.431.8261.624
-.451.8061.609
-.4-D.7871.599
-.490.7681.592
-.508.7491.*
-.525.7301.%7
-.541.7’111.587
-.557.6921.589
-.572.6731.593
-.586.6541.598
-.599.6341.604
-.611.6141.611
-.623.5941.619
-.634.5741.628
-.644.5531.638
-.653.5321.648
-.661.5111.659
-.668.4901.67L
-.674.4681.684
-.679.4461.697
-.653.k4 1.711
-.696.4021.726
-.687.3801.742
-.687.3581.759
-.686.3361.7’7’7
-.693..3141.796
-.678.2921.817
-.6~ .2701.840
-.662.2481.866
-.649.2271.897
-.629;% 1.937
,----- ------

.0.5191.6697.3=
-.5251.6TL7.345
-.5731.6977.933
-.6221.7267.834
-.6TL1.7578.098
-.7201.7898.366
-.7691.8218.635
-.8181.8538.901
-.8671.8869.162
-.9161.9199.416
-.9641.9529.662
1.0111.9869.897
.1.0572.02110.I.2O
1.0992.0% 10.333
.1.1342.09710.550
---— 2.139------

7
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TABLE l.- CWFFICIEMT FIJTWJ?IONSF, G, A?UI H AND .

(:g) ‘1 ‘3 ‘1 ‘2 . ‘3 % %2 ~ E ~ c

eso /
= 30°;UBO c = 0.65;MO = 3.16

9.1748 2.31760.v61 .-3.1456-0.6787-0.2556-1.983-6.42%-1.248-0.6441.9139.913
0.0 2.3652 .1584-3.0704-.7418.-.24.94-.984 -6.941.1.153-.6521.919 9.985
8.75 2.4361 .1.6ti-2.9725-.8202-.24u2 .398 -7.569-1.022-.6631.92810.C93
fl.5 2.5107 .1655-2.&344-.8871-.2336 & -P& $.;$ -.897 -.6741.93710.205
8.25 2.5894 .1694-2.8o45-.9445-.2263 ..776 -.6951.94710.320~
8.0 2.6725 .1737-2.7324-.9940-.2204 4:341 -8:935-.658 -.6961.95710.438
i7.75 2.7606 .1781-2.6663-1.0370-.2154 5.623 -9.259-.543 -.7071.96710.559
i7.5 2.8540 .1830-2.6060-1.0746
:7.8

-.2093 6.9o5 -9.530-.430 -.7181.97810.G32
2.9535 .1.a!31-2.5507-1.1077-.2043 8.195 -9.747-.39 -.7291.98910.807

17.0 3.0596 .1937-2.4996-1.1370-.1997 9.503 -9.931-.207 -.7402.00010.934
6.T5 3.1731.1997.2.4527-1,1631
16.50

-.195410.836-10.070-.096 -.7512.011u.062
3.2949.2062-2.494-1.ti67-.191412.203-10.177

16.25
.016 -.7612.023U.lgl

3.4260 .2132-2.3692-1.MO -.1878u. 614-10.256 .l@ ..7’712.035u..321
16.0 3.56~ .22@ -2.3320-1.2276-.184315.082.10.356 .246 -.7812.047u.k52
15.75 ;.T&$ .293 -2.2974-1.24X -.mll M5.615-10.332 .365
;5.50

-.7912.059U.584
.2384-2.2654-1.262g-.178218.227-10.327 .487 ..8012.071u.716

i5.25 4:0695.2484-2.2355.1.2790-.175419.935-10.302 ;:$ -.8M.2.084u.849
15.0 4.2693.2595-2.2078-1.345 -.1728=. 755-10.256 -.8z 2.09711.g81
14.75 4.4894.2n7 -2.1820-1.3@6 -.170323.709-10.191 .889 ..8= 2.110u. 117
;4.50 4.7334.2954-2.1580.1.3244
i4.25

-.160 s.817-10.1011.033 -.8412.12312.247
5.0055 .3007.2.u56 -1.3392

/4.0
-.166028.116-9.9951.198 -.8512.I3612.%0

5.3110 .3179-2.1149-1.3541-.1640 30.643-9.8671.370 -.8612.~o 12.513
13.75 5.6564 .3374-2.Q357-1.3693-.J.6=33.Ml -9.7221.560 -.8702.16412.646
;3.50 6.0503.3598-2.0779-1.%49 -.160636.577.9.5571.766 -.8792.178X2.77’9
;3.25 6.5041 .3853-2.0614.1.4010-.158940.149-9.3841.997 -.8@82.19212.912
;3.0 7.0325 .4u8 -2.0464-1.4178-.257644.188-9.16!32.s9 -.8972.2061.3.045
2.75 7.6561.4515-2.0347-1.4355-.156348.916-8.9452.558 -.9052.223.13.178
2!50 8.4.033.11.gll.11-2.0198-1.4541-.155054.509-8.7032.9@ -.9132.23613.m
2.25 9.3154 .5469-2.0085-1.4739-.@3 6L2k4 -8.43 3.w -.ga 2.25113.445
2.0 10.454 ,63.3-1.9982-1.4950-.153069.56 -8.U 3.83 ..9282.26713.580
il.75 u.916 ~~~ -1.9891-1.5176-.152280.16 -7.84 4.47 -.9342.28313.~6
;1.50 l&&4 -1.98X2.1.5417-.151694.09 -7.51 5.31 -.9392.23913.855
;1.25 .967 -1.9745-1.5677-.150g113.46 -7.16 6.45 -.9432.36 13.997
0..0 2016721.204 ~;.%& -;.~9&6 -.U05 142.31 -6.78 8.17 -.9462.33314.145
10.7’527.4741.599 -.lylolge.10 -6.37 10.97

41.0722.389
-.9472.35114.304

10.5 -1:96u:1:6X4 -.1498285.20 -5.93 16.51 -.9442.36914.482
;O.B 81.8524.760 .1.9593-1.6g3a -.1496569.G3 -5.46 33.10 -.935:.g 14.702
;0.0 a . -------------------- m- ------ a -------. ------

------ .—- —--——. —
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!cABm L- COEFFICIXCFC FOTWCIOIW F, G, AND H MD

VARIABIE3 ~, q, AND LJ- ConcMded

37.26%
37.25
37
36.75
36.5
36.3
36
5.75
55.5
35.3
35
34.~
34.5
34.25
34
33.75
33.5
33.Z$
33
32.75
32.5
32.25
P
D.75
31.5
3L25
D
30.n
3Q.5
ma
30

15.63M
B.5
D.25
5.0
]4.n
i4.5
?+.25
]4
}3.75
B.5
)3.25
)3
]2.75
12.5
12.a5
Q
B.-E
U.5
u.a
11
D.-75
10.5
D.25
/0

i 1 1 I

4.7’1.3a
4.g8Tl
5.s37
5.6403
6.0s4
6.4902
7.0198
7.w
8.B
g.3056
.0.445
L.gog
.3.859
.6.593
!0.669

2.91010.1365-2.6024-o..sB56
2.9175 .1367-2.5948-.6927
3-W5 .1405-2.4950-.7837
3.1408 .1449-2.4062-.86c$
3.26k2 .1494-2.m -.9265
3.3968 .1543-2.2561..9831
3.5359 .E96 -2.lW -1.03=
3.6946 .1655-2.1342-1.qm
3.8627 .1~ -2.091!3-1.lEg
4.0461 .1~ -2.0341-1.1467
4.24~ .X369-1.9907-Llnl
4.4696 .x356-Lm@ -1.2049

.2052-1.9146-1.2306

.a60 -1.8813-L2547

.2283-L85fB -1.2776

.2422-1.8230-Lm

.2581-L7yE -1.321.3

.276s-1.7742-L 3427

.2g7g-1.7’530-1.3643

.3234-1.7’336-1.3E63

.3540-1.n61 -1.4030

.3915-1.7004-1.43?Z5

.438 -1.#363-L 4573

.%9 -1.6739-1.4835

.579 -1.6&6 -1.5L14

.692 -1.653 -1.5414

.861 -L 6460-1.5735
T.473 L 143 -1.6406-L 6JX33
1.074 1.709 -L 6357-L 6461
11.8623.402 -L6331-L @72

-mm
-.=%
-.2H6
-.2048
-.lg86
-.W9
-.1877
-.1830
-.1786
-.1747
-.lno
-.1676
-.1646
-.1617
-.15gl
-.E67
-.lyl.h
-.15?5
-.IS06
-.1489
-.1474
-.lw.
-.1448
-.1438
-.1427
-.1417
-.1416
-.1405
-.14G5
-.1404

. . ------- -----— -—_---

3.7333
3.82bh
4.0102
4.2134
4.4369
4.6941
4.9593
5.2677
5.6161
6.Om
6.4695
7.0006
7.@@
8.376!3
9.2314
0.4326
1.8975
3.84@
6.5m2
0.662
7.w
1.072
1.859
m

).I15e
.1184
.1237
.=
.135+3
.1431
.l.m
.mu
.1702
.Mm
.lg51
.2107
.2232
.ai3
.m3
.m
.3554
.4132
A493

.8x3
,.222
!.435
w

7:3361
7.4975
9.Tm
lJ..9l3
14.O’@
16.245
X3.438
m. 678
22.ggo
25.396
27.923
30.fsJ33
33.472
36.57o
39.951
43.679
47.832
52.517
5~~

n: klg
80.252
91.I.52
I@.002
U?3.285
lk-%656
ti6.43
2@.01.8
373.615
746.260

.

-8.5@z
-8.633
-9.481
-10.167
-1o.7EB
-1.Llgo
-11.550
-u.841
-12.053
-X2.25.3
-u.38
-12.365
-12.373
-U.338
-12.ql
-12.164
-E.023
-u.85J3
-il.645
-Il.4C9
-lI..139
-10.839
-10.506
-10.u6
-9.73a
-9.301
-8.823
-8.ZUO
-7.751
-7.148
-------

8%= 30°;u%/c . 0.75;W . 5.OM

-1.9555-o.6%$5
-1..9O27-.7446
,-L8u9 -.83kg
-L 7323 -.9=6
-L 6620 -.9774
-1.5597-1.0349
-1.5442-1.0946
-1.4947-1.W2
-L 45cfJ-LE5
-1.4105-1.2065
-1.3751-I..241o
-L 3432-1.273
-L 3145-L m
-1.2889-I.3367
-1.2662-L 3679
-L 2460-1.3996
-L 2283-L 4324
-1.21.30.-1.4665
-1.2001-1.50X3
-L 1894-1.5415
-L lmo -1.5832
-L 1748-L 6234
-L lpl -1.6778
---—-- -----—

0. I.&c
-.1801
-.1749
-.1702
-.1660
-.1622
-.1587
-.1556
-.U27
-.3.Y=
-.1478
-.1459
-.149
-.1422
-.1407
-.u93
-.1382
-.um
-.u63
-.B6
-.1.351
-.1347
-.1344
—----

T
27.724 -12.cF33
B.898 -12.720
34.092-13.732
38.352-14.537
42.773 -U.169
47.416-u.651
52.349 -16.005
57.= -16.247
63.45-3-16.390
69.861a:.~4
n. 030
85.140 -S:303
94.595 -16.B
m. 67 -15.892
118.97 -15.582
1.35.02-15.21xl
156.u -14.76!3
X33.48 -14.263
2zl.44 -13.fm
277.91 -13.048
37L43 -la332
557.51 -lL538
UL3.8 -1o.m

. -—----

.l.06CI
1.0485
-.8814
-.72J
;:5g

-.34
-.100
.054
.212
.373
.539
.n3
.896
1.Cgo
l.@g
1.527
L77’7
2.057
2.374
2.742
3.175
3.701
4.357
~.2#

8:099
0.921
$49:
.
co

.0.7734
-.6579
;:%

-.0105

;%
.6641
.9C84
1.16s9
1.4505
L7597
2.1G54
2.4994
2.9592
3.5WJ5
4.lgq5
5.0679
6.2601
8.004
,0.849
.6.449
F..W9
m

.O.m
--ix
-.722
-.733
-.74C
-.74t
-.7X
-.7fa
-.7-E
-.-@c
-.-m
-.796
-.&:
-.81c
-.817
-.824
-.83c
-.836
-.842
-.847
-.852
-.856
-.859
-.861
-.862
-.861
-.858
-.852
-.841
-.82u
-----

2.Oc$
2.Olc
2.o~
2.~
2.o%
2.05C
2.O&
2.074
2.OW
2.~
2.I.12
2.X26
2.14C
2.1.54
2.165
2.1.84
2.lg5
2.w
2.23
2.2&I
2.264
2.281

::%
2.336
2.355
2.375
2.395
2.416
2,438
2.461

IL I&
11.1%
u..3.51
11.5u
XL.67$
u.851
12.021
12.207
12. 39C
12.575
1.2.764
12.951
13.142
13.334
U.527
1.3.7!Z
3.3.917
14.~
14.31.C
14.505
14.707
14.907
15.ic+
15.34
E.T22
15.735
15.9%
16.189
16.443
16.743
------

0.7822.~o 1.2.060
-.7852.C95 E. 191
-.BO 2.105E. 451
-.~ 2.n6 lam
-.-(gg2.1281.3.010
-.8o32.14113.305
-.8o72.1551.3.610
-.8102.1701.3.923
-.8132.18514.244
-.8162.20114.573
-.8I.82.21714.909
-.8202.2341.5.252
-.8= 2.25215.602
-.8222.27015.m
-.8222.ti916.m
-.8a.2.3C816.701
-.8w 2.32817.089
-.8162.34917.493
-.8102.37i17.918
-.8022.39318.369
-.l’gl2.ktiti.860
-.7732.44019.421
-.744;.~l 20.I.&J
----- . ------
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‘m 2“- %./%OAm MO AT VARIOUS

VALUES OF e~O

e~o s
loo e~o = 20° eso = 30°

%?./%O MO ~JRso
@

MO %./%O

1.09 7.63 1.22 -0.275 1.52 0.179

I.60 40.1 1.65 2.83 2.33 1.30

2.39 12.o 2.51 2.19 3.16 1.24

3.30 5.23 3.37 1.72 3.85 1.17

5.42 2.35 5.55 1.30 5.01 1*U

.
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Figure l.- General notations.
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shock

Figure 2.- Diagram illustrating formulation of boundary conditions
at shock wave.
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shock

NACA TN 2505
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Figure 3.. Velocity components at a point on shock.
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Figure k.- Variation of ratio of>curvature with ~. Data for me>

Pe) and he taken from reference 7.
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